scholarly journals Building Agroforestry Policy Bottom-Up: Knowledge of Czech Farmers on Trees in Farmland

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 278
Author(s):  
Jana Krčmářová ◽  
Lukáš Kala ◽  
Alica Brendzová ◽  
Tomáš Chabada

Czech agriculture is dealing with the consequences of climate change. Agroforestry cultures are being discursively reintroduced for better adaptability and resilience, with the first practical explorations seen in the field. Scholars have been working with farmers and regional stakeholders to establish a baseline for making agroforestry policy viable and sustainable. In a research effort that lasted three years, a large group of Czech farmers was interviewed via questionnaire surveys, standardized focus groups and in-depth personal interviews regarding their knowledge of agroforestry systems, their willingness to participate in these systems, and their concerns and expectations therewith. The information obtained helped the researchers gain better understanding of issues related to implementation of these systems. It was found that although trees are present on Czech farms and farmers appreciate their aesthetic and ecological landscape functions, knowledge about possible local synergies with crops and animals is lacking. This local knowledge gap, together with lack of market opportunities for the output of agroforestry systems and undeveloped administrative processes, have been identified as the greatest obstacles to the establishment of agroforestry systems. The researchers argue that the discovered cognitive and technological “lock-in” of the farmers may represent a risk to climate change adaptability and resilience. For the development of complex and localised land use (e.g., agroforestry) in such a context, the researchers suggest participative on-farm research, which would broaden the local knowledge base related to ecology and entrepreneurship.

Climate ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 60
Author(s):  
Patricia Ruiz-García ◽  
Cecilia Conde-Álvarez ◽  
Jesús David Gómez-Díaz ◽  
Alejandro Ismael Monterroso-Rivas

Local knowledge can be a strategy for coping with extreme events and adapting to climate change. In Mexico, extreme events and climate change projections suggest the urgency of promoting local adaptation policies and strategies. This paper provides an assessment of adaptation actions based on the local knowledge of coffee farmers in southern Mexico. The strategies include collective and individual adaptation actions that farmers have established. To determine their viability and impacts, carbon stocks and fluxes in the system’s aboveground biomass were projected, along with water balance variables. Stored carbon contents are projected to increase by more than 90%, while maintaining agroforestry systems will also help serve to protect against extreme hydrological events. Finally, the integration of local knowledge into national climate change adaptation plans is discussed and suggested with a local focus. We conclude that local knowledge can be successful in conserving agroecological coffee production systems.


1969 ◽  
Vol 58 (2) ◽  
pp. 193-210 ◽  
Author(s):  
Karine Gagné

Assumptions that local communities have an endogenous capacity to adapt to climate change stemming from time-tested knowledge and an inherent sense of community that prompts mobilisation are becoming increasingly common in material produced by international organisations. This discourse, which relies on ahistorical and apolitical conceptions of localities and populations, is based on ideas of timeless knowledge and places. Analysing the water-place nexus in Ladakh, in the Indian Himalayas, through a close study of glacier practices as they change over time, the article argues that local knowledge is subject to change and must be analysed in light of changing conceptions and experiences of place by the state and by local populations alike.


Author(s):  
Mark Cooper ◽  
Kai P. Voss-Fels ◽  
Carlos D. Messina ◽  
Tom Tang ◽  
Graeme L. Hammer

Abstract Key message Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Abstract Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is “How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?” Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype–Management (G–M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G–M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G–M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G–M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


Human Ecology ◽  
2021 ◽  
Author(s):  
Michael Schnegg ◽  
Coral Iris O’Brian ◽  
Inga Janina Sievert

AbstractInternational surveys suggest people increasingly agree the climate is changing and humans are the cause. One reading of this is that people have adopted the scientific point of view. Based on a sample of 28 ethnographic cases we argue that this conclusion might be premature. Communities merge scientific explanations with local knowledge in hybrid ways. This is possible because both discourses blame humans as the cause of the changes they observe. However, the specific factors or agents blamed differ in each case. Whereas scientists identify carbon dioxide producers in particular world regions, indigenous communities often blame themselves, since, in many lay ontologies, the weather is typically perceived as a local phenomenon, which rewards and punishes people for their actions. Thus, while survey results show approval of the scientific view, this agreement is often understood differently and leads to diverging ways of allocating meaning about humans and the weather.


2018 ◽  
Author(s):  
Steven Ostoja ◽  
Tapan Pathak ◽  
Katherine Jarvis-Shean ◽  
Mark Battany ◽  
George Zhuang

The agricultural economy is more vulnerable to projected changes in climate in some California counties than in others. This flyer highlights on-farm adaptation strategies to mitigate some of the effects of increased winter temperatures and more frequent summer heatwaves. Projected conditions will put the most strain on heat intolerant crops and crops with high chill requirements. When crops with these characteristics also have a high market value or are grown in large acreage, counties can be at risk for economic declines. Information on this flyer identifies the most vulnerable counties in California Area 3 for some key, climate-sensitive crops.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 214 ◽  
Author(s):  
Jagadish Timsina

Meeting global demand of safe and healthy food for the ever-increasing population now and into the future is currently a crucial challenge. Increasing crop production by preserving environment and mitigating climate change should thus be the main goal of today’s agriculture. Conventional farming is characterized by use of high-yielding varieties, irrigation water, chemical fertilizers and synthetic pesticides to increase yields. However, due to either over- or misuse of chemical fertilizers or pesticides in many agro-ecosystems, such farming is often blamed for land degradation and environmental pollution and for adversely affecting the health of humans, plants, animals and aquatic ecosystems. Of all inputs required for increased agricultural production, nutrients are considered to be the most important ones. Organic farming, with use of organic sources of nutrients, is proposed as a sustainable strategy for producing safe, healthy and cheaper food and for restoring soil fertility and mitigating climate change. However, there are several myths and controversies surrounding the use of organic versus inorganic sources of nutrients. The objectives of this paper are: (i) to clarify some of the myths or misconceptions about organic versus inorganic sources of nutrients and (ii) to propose alternative solutions to increase on-farm biomass production for use as organic inputs for improving soil fertility and increasing crop yields. Common myths identified by this review include that organic materials/fertilizers can: (i) supply all required macro- and micro-nutrients for plants; (ii) improve physical, chemical and microbiological properties of soils; (iii) be applied universally on all soils; (iv) always produce quality products; (v) be cheaper and affordable; and (vi) build-up of large amount of soil organic matter. Other related myths are: “legumes can use entire amount of N2 fixed from atmosphere” and “bio-fertilizers increase nutrient content of soil.” Common myths regarding chemical fertilizers are that they: (i) are not easily available and affordable, (ii) degrade land, (iii) pollute environment and (iv) adversely affect health of humans, animals and agro-ecosystems. The review reveals that, except in some cases where higher yields (and higher profits) can be found from organic farming, their yields are generally 20–50% lower than that from conventional farming. The paper demonstrates that considering the current organic sources of nutrients in the developing countries, organic nutrients alone are not enough to increase crop yields to meet global food demand and that nutrients from inorganic and organic sources should preferably be applied at 75:25 ratio. The review identifies a new and alternative concept of Evergreen Agriculture (an extension of Agroforestry System), which has potential to supply organic nutrients in much higher amounts, improve on-farm soil fertility and meet nutrient demand of high-yielding crops, sequester carbon and mitigate greenhouse gas emissions, provide fodder for livestock and fuelwood for farmers and has potential to meet global food demand. Evergreen Agriculture has been widely adapted by tens of millions of farmers in several African countries and the review proposes for evaluation and scaling-up of such technology in Asian and Latin American countries too.


2013 ◽  
Vol 14 (2) ◽  
pp. 138-142 ◽  
Author(s):  
Eric R. Morgan

AbstractLevels and seasonal patterns of parasite challenge to livestock are likely to be affected by climate change, through direct effects on life cycle stages outside the definitive host and through alterations in management that affect exposure and susceptibility. Net effects and options for adapting to them will depend very strongly on details of the system under consideration. This short paper is not a comprehensive review of climate change effects on parasites, but rather seeks to identify key areas in which detail is important and arguably under-recognized in supporting farmer adaptation. I argue that useful predictions should take fuller account of system-specific properties that influence disease emergence, and not just the effects of climatic variables on parasite biology. At the same time, excessive complexity is ill-suited to useful farm-level decision support. Dealing effectively with the ‘devil of detail’ in this area will depend on finding the right balance, and will determine our success in applying science to climate change adaptation by farmers.


2021 ◽  
Vol 26 (3) ◽  
Author(s):  
Ruxandra Popovici ◽  
Andre G. de L. Moraes ◽  
Zhao Ma ◽  
Laura Zanotti ◽  
Keith A. Cherkauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document