scholarly journals Land-Use and Land-Cover Changes in Dong Trieu District, Vietnam, during Past Two Decades and Their Driving Forces

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 798
Author(s):  
Thi-Thu Vu ◽  
Yuan Shen

Land-use and land-cover (LULC) change analyses are useful in understanding the changes in our living environments and their driving factors. Modeling changes of LULC in the future, together with the driving factors derived through analyzing the trends of past LULC changes, bring the opportunity to assess and orientate the current and future land-use policies. As the entryway of Quang Ninh province, Vietnam, Dong Trieu locale has experienced significant LULC changes during the past two decades. In this study, the spatial distribution of six Level I LULC classes, forest, cropland, orchards, waterbody, built-up, and barren land, in Dong Trieu district at 2000, 2010, and 2019 were obtained from Landsat imageries by maximum likelihood technique. The most significant changes observed over the past twenty years are a decrease of barren land (9.1%) and increases of built-up (8.1%) and orchards (6.8%). Driving factor analysis indicated that the changes of cropland and built-up were dependent on distance from road (DFR), distance from main road (DFMR), distance from urban (DFU), distance from water (DFW), elevation, slope, and population density. The changes of forest were dependent on all the driving forces listed above, except DFMR. The orchards mainly appeared near the high-population-density area. The transformation of the waterbody was affected by geography (elevation and slope) and population density. The higher the population density, the less barren the land would appear.

Author(s):  
Motuma Shiferaw Regasa ◽  
Michael Nones

Land Use Land Cover (LULC) changes analysis is one of the most useful methodologies to understand how the land was used in the past years, what types of detections are to be expected in the future, as well as the driving forces and processes behind these changes. In Ethiopia, the rapidly changing of LULC is mainly due to population pressure, resettlement programs, climate change, and other human and nature-induced driving forces. Anthropogenic activities are the most significant factors adversely changing the natural status of the landscape and resources, which exerts unfavourable and adverse impacts on the environment and livelihood. The main goal of the present work is to review previous studies, discussing the spatio-temporal LULC changes in Ethiopian basins, to find out common points and gaps that exist in the current literature, to be eventually addressed in the future. Seventeen articles, published from 2011 to 2020, were selected and reviewed, focusing on LULC classification using ArcGIS and ERDAS imagine software by unsupervised and maximum likelihood supervised classification methods. Key informant interview (KII), focal group discussions (FGDs) and collection of ground truth data using ground positioning systems (GPS) for data validation were the major approaches discussed in most of the studies. All the analysed research showed that, during the last decades, Ethiopian lands changed to agricultural land use, waterbody, commercial farmland and built-up/settlement. Some parts of forest land, grazing land, swamp/wetland, shrubland, rangeland and bare/ rock out cropland cover class were changed to other LULC class types, mainly as a consequence of increasing anthropogenic pressure. In summary, these articles confirmed that LULC changes are a direct result of both natural and human influences. However, most of the study provided details of LULC for the past decades within a specific spatial location, while they did not address the challenge of forecasting future LULC changes at the basin scale.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 585
Author(s):  
Motuma Shiferaw Regasa ◽  
Michael Nones ◽  
Dereje Adeba

Land Use Land Cover (LULC) changes analysis is one of the most useful methodologies to understand how the land was used in the past years, what types of detections are to be expected in the future, as well as the driving forces and processes behind these changes. In Ethiopia, Africa, the rapid variations of LULC observed in the last decades are mainly due to population pressure, resettlement programs, climate change, and other human- and nature-induced driving forces. Anthropogenic activities are the most significant factors adversely changing the natural status of the landscape and resources, which exerts unfavourable and adverse impacts on the environment and livelihood. The main goal of the present work is to review previous studies, discussing the spatiotemporal LULC changes in Ethiopian basins, to find out common points and gaps that exist in the current literature, to be eventually addressed in the future. A total of 25 articles, published from 2011 to 2020, were selected and reviewed, focusing on LULC classification using ArcGIS and ERDAS imagine software by unsupervised and maximum likelihood supervised classification methods. Key informant interview, focal group discussions, and collection of ground truth information using ground positioning systems for data validation were the major approaches applied in most of the studies. All the analysed research showed that, during the last decades, Ethiopian lands changed from natural to agricultural land use, waterbody, commercial farmland, and built-up/settlement. Some parts of forest land, grazing land, swamp/wetland, shrubland, rangeland, and bare/ rock out cropland cover class changed to other LULC class types, mainly as a consequence of the increasing anthropogenic pressure. In summary, these articles confirmed that LULC changes are a direct result of both natural and human influences, with anthropogenic pressure due to globalisation as the main driver. However, most of the studies provided details of LULC for the past decades within a specific spatial location, while they did not address the challenge of forecasting future LULC changes at the watershed scale, therefore reducing the opportunity to develop adequate basin-wide management strategies for the next years.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Aman Srivastava ◽  
Pennan Chinnasamy

AbstractThe present study, for the first time, examined land-use land cover (LULC), changes using GIS, between 2000 and 2018 for the IIT Bombay campus, India. Objective was to evaluate hydro-ecological balance inside campus by determining spatio-temporal disparity between hydrological parameters (rainfall-runoff processes), ecological components (forest, vegetation, lake, barren land), and anthropogenic stressors (urbanization and encroachments). High-resolution satellite imageries were generated for the campus using Google Earth Pro, by manual supervised classification method. Rainfall patterns were studied using secondary data sources, and surface runoff was estimated using SCS-CN method. Additionally, reconnaissance surveys, ground-truthing, and qualitative investigations were conducted to validate LULC changes and hydro-ecological stability. LULC of 2018 showed forest, having an area cover of 52%, as the most dominating land use followed by built-up (43%). Results indicated that the area under built-up increased by 40% and playground by 7%. Despite rapid construction activities, forest cover and Powai lake remained unaffected. This anomaly was attributed to the drastically declining barren land area (up to ~ 98%) encompassing additional construction activities. Sustainability of the campus was demonstrated with appropriate measures undertaken to mitigate negative consequences of unwarranted floods owing to the rise of 6% in the forest cover and a decline of 21% in water hyacinth cover over Powai lake. Due to this, surface runoff (~ 61% of the rainfall) was observed approximately consistent and being managed appropriately despite major alterations in the LULC. Study concluded that systematic campus design with effective implementation of green initiatives can maintain a hydro-ecological balance without distressing the environmental services.


2019 ◽  
Vol 11 (3) ◽  
pp. 832 ◽  
Author(s):  
Maggie G. Munthali ◽  
Nerhene Davis ◽  
Abiodun M. Adeola ◽  
Joel O. Botai ◽  
Jonathan M. Kamwi ◽  
...  

Research on Land Use and Land Cover (LULC) dynamics, and an understanding of the drivers responsible for these changes, are very crucial for modelling future LULC changes and the formulation of sustainable and robust land-management strategies and policy decisions. This study adopted a mixed method consisting of remote sensing and Geographic Information System (GIS)-based analysis, focus-group discussions, key informant interviews, and semi-structured interviews covering 586 households to assess LULC dynamics and associated LULC change drivers across the Dedza district, a central region of Malawi. GIS-based analysis of remotely sensed data revealed that barren land and built-up areas extensively increased at the expense of agricultural and forest land between 1991 and 2015. Analysis of the household-survey results revealed that the perceptions of respondents tended to validate the observed patterns during the remotely sensed data-analysis phase of the research, with 57.3% (n = 586) of the respondents reporting a decline in agricultural land use, and 87.4% (n = 586) observing a decline in forest areas in the district. Furthermore, firewood collection, charcoal production, population growth, and poverty were identified as the key drivers of these observed LULC changes in the study area. Undoubtedly, education has emerged as a significant factor influencing respondents’ perceptions of these drivers of LULC changes. However, unsustainable LULC changes observed in this study have negative implications on rural livelihoods and natural-resource management. Owing to the critical role that LULC dynamics play to rural livelihoods and the ecosystem, this study recommends further research to establish the consequences of these changes. The present study and future research will support decision makers and planners in the design of tenable and coherent land-management strategies.


2020 ◽  
Author(s):  
Bidroha Basu ◽  
Arunima Sarkar Basu ◽  
Srikanta Sannigrahi ◽  
Francesco Pilla

<p>Over the past few decades, there has been over increasing pressure on land due to population growth, urbanization, agriculture expansion and industrialization. The change in land use and land cover (LULC) pattern are highly dependent on human intervention. Deforestation pattern has started due to growth of suburbs, cities, and industrial land. The alarming rate in change of LULC pattern was on a rising trend since 1990s and has been increasing over time. This study focuses on analyzing the changes in LULC pattern in Dublin, Ireland over the past two decades using remotely sensed LANDSAT satellite imagery data, and quantify the effect of LULC change in streamflow simulation in watershed at Dublin by using rainfall-runoff model. Benefit of using remotely sensed image to investigate LULC changes include availability of high-resolution spatial data at free of cost, images captured at high temporal resolution to monitor the changes in LULC during both seasonal and yearly timescale and readily availability of data. The potential classification of landforms has been done by performing both supervised as well as unsupervised classification. The results obtained from the classified images have been compared to google earth images to understand the accuracy of the image classification. The change in LULC can be characterized by changes in building density and urban/artificial area (build up areas increase due to population growth), changes in vegetation area as well as vegetation health, changes in waterbodies and barren land. Furthermore, a set of indices such as vegetation index, building index, water index and drought index were estimated, and their changes were monitored over time. Results of this analysis can be used to understand the driving factors affecting the changes in LULC and to develop mathematical models to predict future changes in landforms. Soil Water Assessment Tool (SWAT) based rainfall-runoff model were used to simulate the changes in runoff due to the LULC changes in watershed over two decades. The developed framework is highly replicable because of the used LANDSAT data and can be applied to generate essential information for conservation and management of green/forest lands, as well as changes in water availability and water stress in the assessed area.</p>


2020 ◽  
Author(s):  
Marie-Jose Gaillard ◽  
Andria Dawson ◽  
Ralph Fyfe ◽  
Esther Githumbi ◽  
Emily Hammer ◽  
...  

<p>The question of whether prehistoric human impacts on land cover (i.e. anthropogenic land cover change due to land use, LULC) were sufficiently large to have a major impact on regional cli-mates is still a matter of debate. Climate model simulations have shown that LULC datasets can have large regional impacts on climate in recent and prehistoric time<sup> (1)</sup>. But there are major differences between the available LULC scenarios/datasets such as HYDE (History Database of the Global En-vironment) and Kaplan’s KK10 <sup>(2)</sup>, and diagnoses of inferred carbon-cycle impacts show that none of the scenarios are realistic <sup>(3)</sup>. The only way to provide a useful assessment of the potential for LULC changes to affect climate in the past, is to provide more realistic LULC data based on palaeovegetation and archaeological evidence to improve the LULC datasets used in climate modelling<sup>(4)</sup>. We use the REVEALS model to reconstruct LC from pollen data at a regional scale, and archaeological data to map LU types and distribution, and estimate per capita LU. The archaeology-based LU maps and per-capita LU estimates are used to improve LULC datasets. Pollen-based REVEALS LC estimates are then used to evaluate/validate the new, improved LULC datasets. These new datasets will be used to implement past land use in palaeoclimate and carbon cycle model simulations. Such simulations are necessary to assess the impact of LULC changes in the past and understand the effect of ecosys-tem management on future climate. We present results from five years of PAGES LandCover6k activities. </p><p>(1) Strandberg G, Kjellström E, Poska A, Wagner S, Gaillard M-J et al. (2014) Regional climate model sim-ulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Clim. Past 10, 661–680.<br>(2) Gaillard M-J, Sugita S, Mazier F et al (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim. Past 6, 483-499.<br>(3) Stocker B, Yud Z, Massae C, Joos F (2017) Holocene peatland and ice-core data constraints on the tim-ing and magnitude of CO2 emissions from past land use. www.pnas.org/cgi/doi/10.1073/ pnas.1613889114.<br>(4) Harrison S P, Gaillard M-J, Stocker B D, Vander Linden M, Klein Goldewijk K, Boles O, Braconnot P, Dawson A, Fluet-Chouinard E, Kaplan J O, Kastner T, Pausata F S R, Robinson E, Whitehouse N J, Madella M, and Morrison K D (2019) Development and testing of scenarios for implementing Holocene LULC in Earth Sys-tem Model Experiments, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-125, in review, 2019.</p><p><sup> </sup></p><p> </p><p> </p>


2019 ◽  
Vol 11 (19) ◽  
pp. 5174 ◽  
Author(s):  
Botlhe Matlhodi ◽  
Piet K. Kenabatho ◽  
Bhagabat P. Parida ◽  
Joyce G. Maphanyane

Land use land cover (LULC) change is one of the major driving forces of global environmental change in many developing countries. In this study, LULC changes were evaluated in the Gaborone dam catchment in Botswana between 1984 and 2015. The catchment is a major source of water supply to Gaborone city and its surrounding areas. The study employed Remote Sensing and Geographical Information System (GIS) using Landsat imagery of 1984, 1995, 2005 and 2015. Image classification for each of these imageries was done through supervised classification using the Maximum Likelihood Classifier. Six major LULC categories, cropland, bare land, shrub land, built-up area, tree savanna and water bodies, were identified in the catchment. It was observed that shrub land and tree savanna were the major LULC categories between 1984 and 2005 while shrub land and cropland dominated the catchment area in 2015. The rates of change were generally faster in the 1995–2005 and 2005–2015 periods. For these periods, built-up areas increased by 59.8 km2 (108.3%) and 113.2 km2 (98.5%), respectively, while bare land increased by 50.3 km2 (161.1%) and 99.1 km2 (121.5%). However, in the overall period between 1984 and 2015, significant losses were observed for shrub land, 763 km2 (29.4%) and tree savanna, 674 km2 (71.3%). The results suggest the need to closely monitor LULC changes at a catchment scale to facilitate water resource management and to maintain a sustainable environment.


2020 ◽  
Author(s):  
Al-amin Abbas Ahmad

Abstract Land Use and Land Cover (LULC) are important components of the environmental system and changes in it mirror the impacts of human activities on the environment. These impacts needed to be determined in order to get a clear picture of the extent at which different land use practices change over time. This study focused on the Land use and land cover changes of Fagge local government Kano state between 1991 and 2019 and also identify the driving forces of such changes. The data for the study two 30m x 30m Landsat images (Landsat 4&8) of the two years i.e. 2019 and 1991. The two images undergo series of image analysis and classification using ArcGIS 10.7 and ENVI 5.1 and the result where presented in form of maps, charts and tables. The result also shows that the changes that occurred from 1991 to 2019 in Fagge local government to be positive and negative changes. There happen to be a positive in the size of built-up areas in Fagge from 1991 – 2019 with a change of +4.678km2. The vegetation cover experienced a negative change of -8.87km2 while the barren land also had an increase in size with a positive change of +4.199. The data collected from previous studies indicated that the main driving behind the various changes may include; urban expansion, population growth, commercial and economic activities, security, and Government law and policies. It was recommended that Sufficient land use/land cover information should be acquired, Sensitization programs on land use / land cover, Geospatial techniques should be adopted by Government and NGO’s and lastly Government policies should geared to ensuring that there is balance in the utilization of the available land in the country


2021 ◽  
Vol 14 (1) ◽  
pp. 41-52
Author(s):  
Aqil Tariq ◽  
Hong Shu ◽  
Saima Siddiqui ◽  
Muhammad Imran ◽  
Muhammad Farhan

Change of land use and land cover (LULC) has been a key issue of natural resource conservation policies and environmental monitoring. In this study, we used multi-temporal remote sensing data and spatial analysis to assess the land cover changes in Fateh Jhang, Attock District, Pakistan. Landsat 7 (ETM+) for the years 2000, 2005 and 2010 and Landsat 8 (OLI/TIRS) for the year 2015 were classified using the maximum likelihood algorithms into built-up area, barren land, vegetation and water area. Post-classification methods of change detection were then used to assess the variation that took place over the study period. It was found that the area of vegetation has decreased by about 176.19 sq. km from 2000 to 2015 as it was converted to other land cover types. The built-up area has increased by 5.75%. The Overall Accuracy and Kappa coefficient were estimated at 0.92 and 0.77, 0.92 and 0.78, 0.90 and 0.76, 0.92 and 0.74, for the years 2000, 2005, 2010 and 2015, respectively. It turned out that economic development, climate change and population growth are the main driving forces behind the change. Future research will examine the effects of changing land use types on Land Surface Temperature (LST) over a given time period.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
Abdul Kadir ◽  
Zia Ahmed ◽  
Md. Misbah Uddin ◽  
Zhixiao Xie ◽  
Pankaj Kumar

This study aims to assess the impacts of land use and land cover (LULC) changes on the water quality of the Surma river in Bangladesh. For this, seasonal water quality changes were assessed in comparison to the LULC changes recorded from 2010 to 2019. Obtained results from this study indicated that pH, electrical conductivity (EC), and total dissolved solids (TDS) concentrations were higher during the dry season, while dissolved oxygen (DO), 5-day biological oxygen demand (BOD5), temperature, total suspended solids (TSS), and total solids (TS) concentrations also changed with the season. The analysis of LULC changes within 1000-m buffer zones around the sampling stations revealed that agricultural and vegetation classes decreased; while built-up, waterbody and barren lands increased. Correlation analyses showed that BOD5, temperature, EC, TDS, and TSS had a significant relationship (5% level) with LULC types. The regression result indicated that BOD5 was sensitive to changing waterbody (predictors, R2 = 0.645), temperature was sensitive to changing waterbodies and agricultural land (R2 = 0.889); and EC was sensitive to built-up, vegetation, and barren land (R2 = 0.833). Waterbody, built-up, and agricultural LULC were predictors for TDS (R2 = 0.993); and waterbody, built-up, and barren LULC were predictors for TSS (R2 = 0.922). Built-up areas and waterbodies appeared to have the strongest effect on different water quality parameters. Scientific finding from this study will be vital for decision makers in developing more robust land use management plan at the local level.


Sign in / Sign up

Export Citation Format

Share Document