scholarly journals The Telomeric Protein TRF2 Regulates Replication Origin Activity within Pericentromeric Heterochromatin

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 267
Author(s):  
Serge Bauwens ◽  
Liudmyla Lototska ◽  
Stephane Koundrioukoff ◽  
Michelle Debatisse ◽  
Jing Ye ◽  
...  

Heterochromatic regions render the replication process particularly difficult due to the high level of chromatin compaction and the presence of repeated DNA sequences. In humans, replication through pericentromeric heterochromatin requires the binding of a complex formed by the telomeric factor TRF2 and the helicase RTEL1 in order to relieve topological barriers blocking fork progression. Since TRF2 is known to bind the Origin Replication Complex (ORC), we hypothesized that this factor could also play a role at the replication origins (ORI) of these heterochromatin regions. By performing DNA combing analysis, we found that the ORI density is higher within pericentromeric satellite DNA repeats than within bulk genomic DNA and decreased upon TRF2 downregulation. Moreover, we showed that TRF2 and ORC2 interact in pericentromeric DNA, providing a mechanism by which TRF2 is involved in ORI activity. Altogether, our findings reveal an essential role for TRF2 in pericentromeric heterochromatin replication by regulating both replication initiation and elongation.

Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1435-1444 ◽  
Author(s):  
Robert M Stupar ◽  
Junqi Song ◽  
Ahmet L Tek ◽  
Zhukuan Cheng ◽  
Fenggao Dong ◽  
...  

Abstract The heterochromatin in eukaryotic genomes represents gene-poor regions and contains highly repetitive DNA sequences. The origin and evolution of DNA sequences in the heterochromatic regions are poorly understood. Here we report a unique class of pericentromeric heterochromatin consisting of DNA sequences highly homologous to the intergenic spacer (IGS) of the 18S•25S ribosomal RNA genes in potato. A 5.9-kb tandem repeat, named 2D8, was isolated from a diploid potato species Solanum bulbocastanum. Sequence analysis indicates that the 2D8 repeat is related to the IGS of potato rDNA. This repeat is associated with highly condensed pericentromeric heterochromatin at several hemizygous loci. The 2D8 repeat is highly variable in structure and copy number throughout the Solanum genus, suggesting that it is evolutionarily dynamic. Additional IGS-related repetitive DNA elements were also identified in the potato genome. The possible mechanism of the origin and evolution of the IGS-related repeats is discussed. We demonstrate that potato serves as an interesting model for studying repetitive DNA families because it is propagated vegetatively, thus minimizing the meiotic mechanisms that can remove novel DNA repeats.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Prušáková ◽  
Vratislav Peska ◽  
Stano Pekár ◽  
Michal Bubeník ◽  
Lukáš Čížek ◽  
...  

AbstractTelomeres are protective structures at the ends of eukaryotic chromosomes, and disruption of their nucleoprotein composition usually results in genome instability and cell death. Telomeric DNA sequences have generally been found to be exceptionally conserved in evolution, and the most common pattern of telomeric sequences across eukaryotes is (TxAyGz)n maintained by telomerase. However, telomerase-added DNA repeats in some insect taxa frequently vary, show unusual features, and can even be absent. It has been speculated about factors that might allow frequent changes in telomere composition in Insecta. Coleoptera (beetles) is the largest of all insect orders and based on previously available data, it seemed that the telomeric sequence of beetles varies to a great extent. We performed an extensive mapping of the (TTAGG)n sequence, the ancestral telomeric sequence in Insects, across the main branches of Coleoptera. Our study indicates that the (TTAGG)n sequence has been repeatedly or completely lost in more than half of the tested beetle superfamilies. Although the exact telomeric motif in most of the (TTAGG)n-negative beetles is unknown, we found that the (TTAGG)n sequence has been replaced by two alternative telomeric motifs, the (TCAGG)n and (TTAGGG)n, in at least three superfamilies of Coleoptera. The diversity of the telomeric motifs was positively related to the species richness of taxa, regardless of the age of the taxa. The presence/absence of the (TTAGG)n sequence highly varied within the Curculionoidea, Chrysomeloidea, and Staphylinoidea, which are the three most diverse superfamilies within Metazoa. Our data supports the hypothesis that telomere dysfunctions can initiate rapid genomic changes that lead to reproductive isolation and speciation.


1996 ◽  
Vol 40 (10) ◽  
pp. 2380-2386 ◽  
Author(s):  
M J Everett ◽  
Y F Jin ◽  
V Ricci ◽  
L J Piddock

Twenty-eight human isolates of Escherichia coli from Argentina and Spain and eight veterinary isolates received from the Ministry of Agriculture Fisheries and Foods in the United Kingdom required 2 to > 128 micrograms of ciprofloxacin per ml for inhibition. Fragments of gyrA and parC encompassing the quinolone resistance-determining region were amplified by PCR, and the DNA sequences of the fragments were determined. All isolates contained a mutation in gyrA of a serine at position 83 (Ser83) to an Leu, and 26 isolates also contained a mutation of Asp87 to one of four amino acids: Asn (n = 14), Tyr (n = 6), Gly (n = 5), or His (n = 1). Twenty-four isolates contained a single mutation in parC, either a Ser80 to Ile (n = 17) or Arg (n = 2) or a Glu84 to Lys (n = 3). The role of a mutation in gyrB was investigated by introducing wild-type gyrB (pBP548) into all isolates; for three transformants MICs of ciprofloxacin were reduced; however, sequencing of PCR-derived fragments containing the gyrB quinolone resistance-determining region revealed no changes. The analogous region of parE was analyzed in 34 of 36 isolates by single-strand conformational polymorphism analysis and sequencing; however, no amino acid substitutions were discovered. The outer membrane protein and lipopolysaccharide profiles of all isolates were compared with those of reference strains, and the concentration of ciprofloxacin accumulated (with or without 100 microM carbony cyanide m-chlorophenylhydrazone [CCCP] was determined. Twenty-two isolates accumulated significantly lower concentrations of ciprofloxacin than the wild-type E. coli isolate; nine isolates accumulated less then half the concentration. The addition of CCCP increased the concentration of ciprofloxacin accumulated, and in all but one isolate the percent increase was greater than that in the control strains. The data indicate that high-level fluoroquinolone resistance in E. coli involves the acquisition of mutations at multiple loci.


Genome ◽  
2009 ◽  
Vol 52 (7) ◽  
pp. 647-657 ◽  
Author(s):  
P. J. Maughan ◽  
T. B. Turner ◽  
C. E. Coleman ◽  
D. B. Elzinga ◽  
E. N. Jellen ◽  
...  

Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.


2021 ◽  
Vol 4 ◽  
Author(s):  
O. Nurul Fizatul Nabilah ◽  
A. R. Ramizah ◽  
A. B. Adibah ◽  
S. Syazwan ◽  
A.G. Intan Faraha ◽  
...  

Peacock bass or the cichlids are known locally as top predator fishes which are invasive in Malaysia freshwater system. Detection probabilities for these fishes are typically low, especially using conventional capture-survey method due to the fish’s behaviour of hiding beneath the water’s surface. Hence, the environmental DNA (eDNA) monitoring is a relatively new approach that can be used to assess the distribution of these invasive fishes. Here, we report the strategy to develop small fragment (280- 400 bp) specific-specific primers for three selected invasive Cichla species namely, C. ocellaris, C. monoculus, and C. kelberi based on mitochondrial DNA (mtDNA) sequences. Current research showed that the developed species-specific primers from cytochrome oxidase I (COI) gene has high resolution at species level. Species-specific amplification tests also proved the specificity of the developed primers, securing the high- level species identification potential which may help in controlling the spread of alien invasive fish species.


2020 ◽  
Vol 477 (2) ◽  
pp. 325-339 ◽  
Author(s):  
Vaclav Brazda ◽  
Miroslav Fojta ◽  
Richard P. Bowater

DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.


1991 ◽  
Vol 11 (12) ◽  
pp. 6197-6204
Author(s):  
S E Millar ◽  
E Lader ◽  
L F Liang ◽  
J Dean

The zona pellucida of mouse oocytes, composed of three major glycoproteins (ZP1, ZP2, and ZP3), performs crucial functions at fertilization and in early development. The transcripts encoding mouse ZP2 and ZP3 are coordinately expressed and accumulate in oocytes during a 2-week growth phase prior to ovulation. The 5'-flanking regions of mouse Zp-2 and Zp-3 genes and their human homologs contain five short DNA sequences (4 to 12 bp) that are 60 to 100% identical and are approximately equidistant upstream of the TATAA box in the four genes. Mutation of these five elements (I, IIA, IIB, III, and IV) in Zp-luciferase constructs demonstrates that the 12-bp element IV, positioned approximately 200 bp upstream from the TATAA box, is necessary for high-level expression from the mouse Zp-2 and Zp-3 promoters after microinjection into the nuclei of 50-microns-diameter oocytes. Injection of minimal Zp-3 promoter constructs containing element IV in either orientation also resulted in high levels of reporter gene activity, suggesting that the element is not only necessary but also sufficient for expression from zona pellucida promoters. Oligonucleotides containing the conserved element from either Zp-2 or Zp-3 form DNA-protein complexes of identical mobility in gel retardation assays using extracts of oocytes but not other tissues. These data are consistent with the hypothesis that common factors binding to conserved element IV are involved in coordinate expression of the oocyte-specific Zp-2 and Zp-3 zona pellucida genes.


mBio ◽  
2014 ◽  
Vol 5 (5) ◽  
Author(s):  
Hung-Ji Tsai ◽  
Joshua A. Baller ◽  
Ivan Liachko ◽  
Amnon Koren ◽  
Laura S. Burrack ◽  
...  

ABSTRACTOrigins of DNA replication are key genetic elements, yet their identification remains elusive in most organisms. In previous work, we found that centromeres contain origins of replication (ORIs) that are determined epigenetically in the pathogenic yeastCandida albicans. In this study, we used origin recognition complex (ORC) binding and nucleosome occupancy patterns inSaccharomyces cerevisiaeandKluyveromyces lactisto train a machine learning algorithm to predict the position of active arm (noncentromeric) origins in theC. albicansgenome. The model identified bona fide active origins as determined by the presence of replication intermediates on nondenaturing two-dimensional (2D) gels. Importantly, these origins function at their native chromosomal loci and also as autonomously replicating sequences (ARSs) on a linear plasmid. A “mini-ARS screen” identified at least one and often two ARS regions of ≥100 bp within each bona fide origin. Furthermore, a 15-bp AC-rich consensus motif was associated with the predicted origins and conferred autonomous replicating activity to the mini-ARSs. Thus, while centromeres and the origins associated with them are epigenetic, arm origins are dependent upon critical DNA features, such as a binding site for ORC and a propensity for nucleosome exclusion.IMPORTANCEDNA replication machinery is highly conserved, yet the definition of exactly what specifies a replication origin differs in different species. Here, we utilized computational genomics to predict origin locations inCandida albicansby combining locations of binding sites for the conserved origin replication complex, necessary for replication initiation, together with chromatin organization patterns. We identified predicted sequences that exhibited bona fide origin function and developed a linear plasmid assay to delimit the DNA fragments necessary for origin function. Additionally, we found that a short AC-rich motif, which is enriched in predicted origins, is required for origin function. Thus, we demonstrated a new machine learning paradigm for identification of potential origins from a genome with no prior information. Furthermore, this work suggests thatC. albicanshas two different types of origins: “hard-wired” arm origins that rely upon specific sequence motifs and “epigenetic” centromeric origins that are recruited to kinetochores in a sequence-independent manner.


Sign in / Sign up

Export Citation Format

Share Document