scholarly journals Pro-Oxidative Effect of KIO3 and Protective Effect of Melatonin in the Thyroid—Comparison to Other Tissues

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 592
Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Not only iodine deficiency, but also its excess may contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in the salt iodization program, can increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin is an effective antioxidant, which protects against KIO3-induced LPO in the thyroid. This study aimed to compare the protective effects of melatonin, used in the highest achievable in vitro concentration, against KIO3-induced oxidative damage to membrane lipids in various porcine tissues (thyroid, ovary, liver, kidney, brain, spleen, and small intestine). Homogenates were incubated in the presence of KIO3 (20; 15; 10; 7.5; 5.0; 0.0 mM) without/with melatonin (5 mM). The malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased the LPO in all examined tissues; in the thyroid, the damaging effect of KIO3 (10; and 7.5 mM) was lower than in other tissues and was not observed for the lowest concentration of 5 mM. Melatonin reduced LPO induced by KIO3 (10, 7.5, and 5 mM) in all tissues, and in the thyroid it was also protective against as high a concentration of KIO3 as 15 mM; the LPO level resulting from KIO3 + melatonin treatment was lower in the thyroid than in other tissues. In conclusion, the thyroid is less sensitive tothe pro-oxidative effects of KIO3 compared to other tissues. The strongest protective effect of melatonin was observed in the thyroid, but beneficial effects were significant also in other tissues. Melatonin should be considered to avoid the potential damaging effects of iodine compounds applied in iodine prophylaxis.

Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 89
Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Iodine deficiency is the main environmental factor leading to thyroid cancer. At the same time iodine excess may also contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in salt iodization program, may increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin and indole-3-propionic acid (IPA) are effective antioxidative indoles, each of which protects against KIO3-induced LPO in the thyroid. The study aims to check if melatonin used together with IPA (in their highest achievable in vitro concentrations) reveals stronger protective effects against KIO3-induced LPO in porcine thyroid homogenates than each of these antioxidants used separately. Homogenates were incubated in the presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25; 0.0 mM) without/with melatonin (5 mM) or without/with IPA (10 mM) or without/with melatonin + IPA, and then, to further clarify the narrow range of KIO3 concentrations, against which melatonin + IPA reveal cumulative protective effects, the following KIO3 concentrations were used: 20; 18.75; 17.5; 16.25; 15; 13.75; 12.5; 11.25; 10; 8.75; 7.5; 0.0 mM. Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. Protective effects of melatonin + IPA were stronger than those revealed by each antioxidant used separately, but only when LPO was induced by KIO3 in concentrations from 18.75 mM to 8.75 mM, corresponding to physiological iodine concentration in the thyroid. In conclusion, melatonin and indole-3-propionic acid exert cumulative protective effects against oxidative damage caused by KIO3, when this prooxidant is used in concentrations close to physiological iodine concentrations in the thyroid. Therefore, the simultaneous administration of these two indoles should be considered to prevent more effectively oxidative damage (and thereby thyroid cancer formation) caused by iodine compounds applied in iodine prophylaxis.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


Author(s):  
Parinaz Zivarpour ◽  
Željko Reiner ◽  
Jamal Hallajzadeh ◽  
Liaosadat Mirsafaei

: Cardiovascular diseases are some of the major causes of morbidity and mortality in developed or developing countries but in developed countries as well. Cardiac fibrosis is one of the most often pathological changes of heart tissues. It occurs as a result of extracellular matrix proteins accumulation at myocardia. Cardiac fibrosis results in impaired cardiac systolic and diastolic functions and is associated with other effects. Therapies with medicines have not been sufficiently successful in treating chronic diseases such as CVD. Therefore, the interest for therapeutic potential of natural compounds and medicinal plants has increased. Plants such as grapes, berries and peanuts contain a polyphenolic compound called "resveratrol" which has been reported to have various therapeutic properties for a variety of diseases. Studies on laboratory models that show that resveratrol has beneficial effects on cardiovascular diseases including myocardial infarction, high blood pressure cardiomyopathy, thrombosis, cardiac fibrosis, and atherosclerosis. In vitro animal models using resveratrol indicated protective effects on the heart by neutralizing reactive oxygen species, preventing inflammation, increasing neoangiogenesis, dilating blood vessels, suppressing apoptosis and delaying atherosclerosis. In this review, we are presenting experimental and clinical results of studies concerning resveratrol effects on cardiac fibrosis as a CVD outcome in humans.


2015 ◽  
Vol 42 (12) ◽  
pp. 1141 ◽  
Author(s):  
Yanjie Xie ◽  
Wei Zhang ◽  
Xingliang Duan ◽  
Chen Dai ◽  
Yihua Zhang ◽  
...  

External administration of hydrogen gas (H2) benefits plants from multiple environmental stimuli. However, the physiological significance and molecular mechanism of H2 in ultraviolet-B (UVB) irradiation are largely unexplored. Here, the biological function of H2 in the regulation of plant UVB-tolerance was investigated by using hydrogen-rich water (HRW). Results showed that the exposure of alfalfa seedlings to UVB irradiation increased endogenous H2 production. Pretreatment with HRW mimicked the UVB-induced endogenous H2 production. Corresponding UVB-triggered toxic symptoms, in terms of lipid peroxidation and overproduction of reactive oxygen species (ROS), as well as the subsequent growth inhibition, were markedly mitigated. Metabolic profiling analysis by using ultra performance liquid chromatography-mass spectrometric (UPLC-MS), identified 40 (iso)flavonoids in UVB-treated alfalfa plants, with 22 kinds was increased by HRW. These changes resulted in the alternation of (iso)flavonoids profile, with the effective promotion of isoflavone and flavanone subfamilies in particular. These compounds included afromosin, afromosin 7-O-β-D-glucoside-malonate, daidzein, formononetin 7-O-β-D-glucoside-6ʹʹ-O-malonate, garbanzol, matteucin and naringenin. In vitro tests further showed that the HRW-modulated (iso)flavonoids profile upon UVB stress possessed advanced ROS-quenching and antioxidant capacities under our experimental conditions. Meanwhile, UVB-triggered upregulation in the transcription levels of (iso)flavonoids biosynthetic-related genes were substantially strengthened by HRW. The activities and related transcripts of representative antioxidant enzymes were also induced. Taken together, our findings indicate that HRW confers tolerance to UVB-induced oxidative damage partially by the manipulation of (iso)flavonoids metabolism and antioxidant defence in Medicago sativa L.


2012 ◽  
Vol 63 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Hasan Turkez ◽  
Elanur Aydin

The Effects of Taurine on Permethrininduced Cytogenetic and Oxidative Damage in Cultured Human LymphocytesPermethrin (PM) is a common pyrethroid pesticide used to control pests in agriculture, forestry, horticulture, health care, homes, and textile industry. It is confirmed as a strong mutagen in animals and humans. Taurine (TA) is an amino acid found in mammalian tissues that protects the cell against DNA damage. In this study, we investigated whether supplementation of human lymphocyte cultures with TA (in the concentrations of 25 μg mL-1, 50 μg mL-1and 100 μg mL-1) provided any protection against PM toxicity applied in the concentration of 200 μg mL-1. Genotoxicity was assessed using the micronucleus (MN) and sister chromatid exchanges (SCE) tests. In addition, we measured the total antioxidant capacity (TAC) and total oxidative stress (TOS) levels in the plasma to determine oxidative effects. PM increased SCE and MN levels and altered TAC and TOS levels. TA alone did not affect SCE and MN levels compared to controls, regardless of the concentration applied. In addition, it increased TAC levels without changing TOS levels. Moreover, it significantly buffered the negative cytogenetic and oxidative effects induced by PM in a clear dose-dependent manner. In conclusion, this study is the first to evidence the beneficial effects of TA against PM-induced DNA and oxidative damagesin vitro.


Author(s):  
Shuiqing Hu ◽  
Jinlan Luo ◽  
Menglu Fu ◽  
Liman Luo ◽  
Yueting Cai ◽  
...  

Arterial stiffness, a consequence of smoking, is an underlying risk factor of cardiovascular diseases. Epoxyeicosatrienoic acids (EETs), hydrolyzed by soluble epoxide hydrolase (sEH), have beneficial effects against vascular dysfunction. However, the role of sEH knockout in nicotine-induced arterial stiffness was not characterized. We hypothesized that sEH knockout could prevent nicotine-induced arterial stiffness. In the present study, Ephx2 (the gene encodes sEH enzyme) null (Ephx2-/-) mice and wild-type (WT) littermate mice were infused with or without nicotine and administered with or without nicotinamide (NAM, SIRT1 inhibitor) simultaneously for four weeks. Nicotine treatment increased sEH expression and activity in the aortas of WT mice. Nicotine infusion significantly induced vascular remodeling, arterial stiffness, and SIRT1 deactivation in WT mice, which was attenuated in Ephx2-/- mice without NAM treatment. However, the arterial protective effects were gone in Ephx2-/- mice with NAM treatment. In vitro, 11,12-EET treatment attenuated nicotine-induced MMP2 upregulation via SIRT1-mediated YAP deacetylation. In conclusion, sEH knockout attenuated nicotine-induced arterial stiffness and vascular remodeling via SIRT1-induced YAP deacetylation.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Tienan Zhu ◽  
Laure Carcaillon ◽  
Isabelle Martinez ◽  
Jean-Pierre Cambou ◽  
Xavier Kyndt ◽  
...  

It is widely accepted that influenza vaccination reduces the risk of cardiovascular events in patients with coronary artery diseases. However, no information is available concerning the role of influenza vaccination in venous thromboembolism (VTE). Methods: A case-control study was conducted in 727 cases and 727 age and sex-matched controls from 11 centers in France (the FARIVE study). Cases were patients with a first documented episode of VTE and without any personal history of cancer within the last 5 years; controls were recruited in the same hospital and had no personal history of venous or arterial thrombosis. Results: Overall, 202 (28.2%) of cases and 233 (32.1%) of controls had influenza vaccination during the previous 12 months at the time of recruitment. Information was not available for only 12 subjects out of 1454. The crude odds ratio (OR) for VTE associated with influenza vaccination was 0.76 (95% CI 0.58–0.99). After adjustment for potential confounding variables (age, sex, inclusion date, BMI, educational levels and varicose veins), the OR for VTE associated with vaccination was 0.74 (95% CI 0.57–0.97). The protective effect of vaccination toward VTE was higher in the population below 52 years (median of age), with an OR of 0.52 (95% CI 0.32–0.85). In women below the age of 51, the crude OR for VTE associated with influenza vaccination was 0.50 (95% CI 0.24–1.05) and was significant after adjustment for confounding variables including oral contraceptives, with an OR of 0.41 (95% CI 0.19–0.92). The protective effect of vaccination was similar for different types of VTE (DVT or PE). There was no statistical differences in the protective effects when we compared provoked with unprovoked VTE events. Conclusion: This is the first study that demonstrates a protective effect of influenza vaccination in VTE. In vitro influenza induces activation of coagulation and inflammation but we cannot rule out that the protective effect of influenza vaccination was due to other unknown mechanisms, as the protective effect was similar within the different seasons of the year. Influenza vaccination may reduce the risk of VTE by 26%. This relationship between influenza vaccination and VTE and its underlying mechanism still need to be analyzed and confirmed in further studies.


2014 ◽  
Vol 42 (03) ◽  
pp. 587-604 ◽  
Author(s):  
Willmann Liang ◽  
David T. Yew ◽  
Kam Lun Hon ◽  
Chun Kwok Wong ◽  
Timothy C. Y. Kwok ◽  
...  

The last decade has seen a wealth of information reporting the beneficial effects of Chinese herbal medicines. While a lot more studies were done using in vitro and in vivo research platforms, much fewer investigations were conducted according to evidence-based requirements in clinical settings. The Institute of Chinese Medicine at the Chinese University of Hong Kong (CUHK) has had the opportunity to collaborate with clinicians over the years to initiate and conduct dozens of clinical trials investigating and verifying the therapeutic values of Chinese herbs in selected disease conditions. Of the many disorders, we chose to focus on those that are known for their difficulties achieving perfect results with conventional treatment methods. Examples include non-healing ulcers, allergic conditions, degenerative diseases and cancer. Protective effects of the herbs in such chronic diseases as coronary artery disease and osteoporosis were also part of our focus. Even in healthy individuals and those recovering from chemotherapy, Chinese herbs could help with the immune system and were studied in our clinical trials as well. This paper aims to highlight the important findings from these clinical studies while at the same time, stressing the indispensable value of clinical trials in modernizing the use of Chinese herbs in present-day medicine.


Sign in / Sign up

Export Citation Format

Share Document