scholarly journals Cumulative Protective Effect of Melatonin and Indole-3-Propionic Acid against KIO3—Induced Lipid Peroxidation in Porcine Thyroid

Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 89
Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Iodine deficiency is the main environmental factor leading to thyroid cancer. At the same time iodine excess may also contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in salt iodization program, may increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin and indole-3-propionic acid (IPA) are effective antioxidative indoles, each of which protects against KIO3-induced LPO in the thyroid. The study aims to check if melatonin used together with IPA (in their highest achievable in vitro concentrations) reveals stronger protective effects against KIO3-induced LPO in porcine thyroid homogenates than each of these antioxidants used separately. Homogenates were incubated in the presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25; 0.0 mM) without/with melatonin (5 mM) or without/with IPA (10 mM) or without/with melatonin + IPA, and then, to further clarify the narrow range of KIO3 concentrations, against which melatonin + IPA reveal cumulative protective effects, the following KIO3 concentrations were used: 20; 18.75; 17.5; 16.25; 15; 13.75; 12.5; 11.25; 10; 8.75; 7.5; 0.0 mM. Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. Protective effects of melatonin + IPA were stronger than those revealed by each antioxidant used separately, but only when LPO was induced by KIO3 in concentrations from 18.75 mM to 8.75 mM, corresponding to physiological iodine concentration in the thyroid. In conclusion, melatonin and indole-3-propionic acid exert cumulative protective effects against oxidative damage caused by KIO3, when this prooxidant is used in concentrations close to physiological iodine concentrations in the thyroid. Therefore, the simultaneous administration of these two indoles should be considered to prevent more effectively oxidative damage (and thereby thyroid cancer formation) caused by iodine compounds applied in iodine prophylaxis.

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 592
Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Not only iodine deficiency, but also its excess may contribute to thyroid cancer. Potassium iodate (KIO3), which is broadly used in the salt iodization program, can increase oxidative damage to membrane lipids (lipid peroxidation, LPO) under experimental conditions, with the strongest damaging effect at KIO3 concentration of ~10 mM (corresponding to physiological iodine concentration in the thyroid). Melatonin is an effective antioxidant, which protects against KIO3-induced LPO in the thyroid. This study aimed to compare the protective effects of melatonin, used in the highest achievable in vitro concentration, against KIO3-induced oxidative damage to membrane lipids in various porcine tissues (thyroid, ovary, liver, kidney, brain, spleen, and small intestine). Homogenates were incubated in the presence of KIO3 (20; 15; 10; 7.5; 5.0; 0.0 mM) without/with melatonin (5 mM). The malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased the LPO in all examined tissues; in the thyroid, the damaging effect of KIO3 (10; and 7.5 mM) was lower than in other tissues and was not observed for the lowest concentration of 5 mM. Melatonin reduced LPO induced by KIO3 (10, 7.5, and 5 mM) in all tissues, and in the thyroid it was also protective against as high a concentration of KIO3 as 15 mM; the LPO level resulting from KIO3 + melatonin treatment was lower in the thyroid than in other tissues. In conclusion, the thyroid is less sensitive tothe pro-oxidative effects of KIO3 compared to other tissues. The strongest protective effect of melatonin was observed in the thyroid, but beneficial effects were significant also in other tissues. Melatonin should be considered to avoid the potential damaging effects of iodine compounds applied in iodine prophylaxis.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


2017 ◽  
Vol 36 (9) ◽  
pp. 967-980 ◽  
Author(s):  
SB Mada ◽  
S Reddi ◽  
N Kumar ◽  
S Kapila ◽  
R Kapila

Oxidative stress inhibits osteoblast differentiation and function that lead to the development of osteoporosis. Casein-derived peptide VLPVPQK (PEP), a potent antioxidant, was isolated from β-casein of buffalo milk. We used an in vitro oxidative stress model induced by hydrogen peroxide (H2O2) in rat osteoblastic cells to investigate the protective effects of PEP against H2O2-induced dysfunction and oxidative damage. Cells were pretreated with PEP (50–200 ng/mL) for 2, 7 or 21 days followed by 0.3 mM H2O2 treatment for 24 h and then markers of osteogenic development, oxidative damage and apoptosis were examined. PEP significantly increased the viability and differentiation markers of osteoblast cells such as alkaline phosphatase and calcium mineralization. Moreover, PEP suppressed the production of reactive oxygen species (ROS), lipid peroxidation and ameliorated H2O2-induced reduction in glutathione, superoxide dismutase and catalase activities. In addition, PEP partially inhibited caspase-9 and-3 activities and reduced propidium iodide–positive cells. Altogether, our results demonstrated that PEP could protect rat osteoblast against H2O2-induced dysfunction and oxidative damage by reduction of ROS production, lipid peroxidation and increased antioxidant enzyme activities. Thus, our data suggest that PEP might be a valuable protective agent against oxidative stress–related diseases such as osteoporosis.


Author(s):  
Aleksandra Rynkowska ◽  
Jan Stępniak ◽  
Małgorzata Karbownik-Lewińska

The Fenton reaction (Fe2++H2O2→Fe3++•OH+OH-) results in strong oxidative damage to macromolecules when iron (Fe) or hydrogen peroxide (H2O2) are in excess. This study aims at comparing Fe2++H2O2-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) and protective effects of 17β-estradiol (a potential antioxidant) in porcine ovary and thyroid homogenates. Iron, as one of the Fenton reaction substrates, was used in the highest achievable concentrations. Thyroid or ovary homogenates were incubated in the presence of: (1st) FeSO4+H2O2 with/without 17β-estradiol (1 mM; 100, 10.0, 1.0 µM; 100, 10.0, 1.0 nM; 100, 10.0, 1.0 pM); five experiments were performed with different FeSO4 concentrations (2400, 1200, 600, 300, 150 µM); (2nd) FeSO4 (2400, 1200, 600, 300, 150 µM)+H2O2 with/without 17β-estradiol; three experiments were performed with three highest 17β-estradiol concentrations; (3rd) FeSO4 (2400, 1200, 1100, 1000, 900, 800, 700, 600, 300, 150, 75 µM)+H2O2 (5 mM). LPO level [MDA+4-HDA/mg protein] was measured spectrophotometrically. The basal LPO level is lower in ovary than in thyroid homogenates. However, experimentally-induced LPO was higher in the former tissue, which was confirmed for the three highest Fe2+ concentrations (2400, 1200, 1100 µM). Exogenous 17β-estradiol (1 mM, 100, and 10 µM) reduced experimentally-induced LPO independently of iron concentration and that protective effect did not differ between tissues. The ovary, compared to the thyroid, reveals higher sensitivity to prooxidative effects of iron, however, it showed similar responsivity to protective 17β-estradiol activity. The therapeutic effect of 17β-estradiol against iron overload consequences should be considered with relation to both tissues.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 571
Author(s):  
Aleksandra Rynkowska ◽  
Jan Stępniak ◽  
Małgorzata Karbownik-Lewińska

Iron excess in tissues results in increased oxidative damage. Among different tissues, the skin can particularly be severely damaged by oxidative stress, as it is exposed not only to endogenous but also directly to exogenous pro-oxidants. The skin is especially vulnerable to harmful oxidative stress. Melatonin and indole-3-propionic acid (IPA), two indole substances, are efficient antioxidants. This study aims to evaluate the potential protective effects of melatonin and IPA against oxidative damage to membrane lipids (lipid peroxidation (LPO)), induced in porcine skin homogenates by the Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH−) when iron is used in extremely high concentrations. Skin homogenates were incubated in the presence of FeSO4 (2400, 1200, 600, 300, 150 and 75 µM) + H2O2 (5 mM) with/without melatonin or IPA. LPO level (MDA + 4-HDA/mg protein) was measured spectrophotometrically. Melatonin, in its highest used concentration (5.0 mM), prevented FeSO4 (1200 mM)-induced LPO, whereas it was effective in concentrations as low as 2.5 mM against all lower iron concentrations. IPA was protective in concentrations as low as 2.5 mM independently of FeSO4 concentration. In conclusion, melatonin and IPA effectively protect against oxidative damage to membrane lipids induced by high concentrations of iron in porcine skin; therefore, both can be considered pharmacological agents in the case of disorders associated with excessive iron accumulation in the skin.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


2009 ◽  
Vol 79 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Chaturvedi

In the present study, protective effects of bitter melon (Momordica charantia) extract on lipid peroxidation induced by immobilization stress in rats have been assessed. Graded doses of extract (50, 100, and 150 mg/kg body weight) were administered orally to rats subjected to immobilization stress for two hours for seven consecutive days. Stress was applied by keeping the rats in a cage where no movement was possible. After seven days, rats were killed by decapitation after ether anesthesia. Blood and liver were collected to measure thiobarbituric acid reactive substances, reduced glutathione, and catalase. In vitro effects of M. charantia extract on lipid peroxidation in liver homogenate of normal, control, and rats pretreated with extract were carried out against cumene hydroperoxide-induced lipid peroxidation. Results reveal that in vivo M. charantia inhibited stress-induced lipid peroxidation by increasing the levels of reduced glutathione and activities of catalase. These results were further supported by in vitro results. In vitro inhibition of lipid peroxidation was indicated by low levels of thiobarbituric acid in the liver homogenate from pretreated rats and normal rats when incubated with both cumene hydroperoxide and extract. Inhibition was also noted in the homogenate where the rats were pretreated but the mixture contained no extract. Thus this plant provides protection by strengthening the antioxidants like reduced glutathione and catalase. Inclusion of this plant in the daily diet would be beneficial.


2021 ◽  
Vol 41 (1) ◽  
pp. 16-27
Author(s):  
J. O. Daramola ◽  
T. A. Sorongbe ◽  
O. M. Onagbesan ◽  
A. V. Jegede ◽  
A. O. Ladokun ◽  
...  

Antioxidants are linked with sperm viability because of their protective effects against cell damage during preservation. In order to enhance the life span of refrigerated buck semen, this study was carried out to determine the effect of fruit-rich antioxidants on spermatozoa viability and lipid peroxidation (LPO) of buck semen during liquid storage. Pooled semen from five Red Sokoto bucks was diluted with Tris-egg yolk based extender and supplemented each with juices from pawpaw tomato and watermelon at 0, 2.5, 5, 7.5 and 10/ 100 ml respectively. Following dilution, the semen samples were assessed subjectively after in vitro storage at 5°C for 24, 48, 72 and 96 hours as regards sperm motility, abnormalities, and acrosome status using a phase-contrast microscope. The concentration of malondialdehyde (MDA) as indices of lipid peroxidation (LPO) in the stored semen was measured in thiobarbituric acid reactive substances (TBARS) at 24, 48, 72 and 96 hours. The results showed highest progressive motility in watermelon juice at 2.5% (P<0.05) during the first 24 hours of storage while the lowest progressive motility was recorded at various levels of pawpaw juice (P<0.05). After 48 hours of storage, extender supplemented with watermelon and tomato juices had better progressive motility compared to control except 7.5% and 10%% of tomato juice (P<0.05). Irrespective of level of juice in the extender, the percentage of intact acrosome was similar among the various juices and control. The results showed that spermatozoa extended with watermelon juice had the lowest (P<0.05) percentage abnormality compared to other extenders at 24, 48, 72 and 96 hours of storage. Higher (P<0.05) percent spermatozoa abnormality compared to other fruit juices and control was observed at 72 and 96 hours of storage in spermatozoa extended with pawpaw juice. Significant reductions of MDA concentrations were achieved by addition of fruit-rich antioxidants to Tris-egg yolk based extender during the first 72 hours and the reduction was much pronounced in extender supplemented with pawpaw juice compared to control (P<0.05). The findings reveal that fruit-rich antioxidants from watermelon and tomato have protective ability to maintain sperm viability and to reduce concentration MDA of buck semen during liquid storage.


2015 ◽  
Vol 42 (12) ◽  
pp. 1141 ◽  
Author(s):  
Yanjie Xie ◽  
Wei Zhang ◽  
Xingliang Duan ◽  
Chen Dai ◽  
Yihua Zhang ◽  
...  

External administration of hydrogen gas (H2) benefits plants from multiple environmental stimuli. However, the physiological significance and molecular mechanism of H2 in ultraviolet-B (UVB) irradiation are largely unexplored. Here, the biological function of H2 in the regulation of plant UVB-tolerance was investigated by using hydrogen-rich water (HRW). Results showed that the exposure of alfalfa seedlings to UVB irradiation increased endogenous H2 production. Pretreatment with HRW mimicked the UVB-induced endogenous H2 production. Corresponding UVB-triggered toxic symptoms, in terms of lipid peroxidation and overproduction of reactive oxygen species (ROS), as well as the subsequent growth inhibition, were markedly mitigated. Metabolic profiling analysis by using ultra performance liquid chromatography-mass spectrometric (UPLC-MS), identified 40 (iso)flavonoids in UVB-treated alfalfa plants, with 22 kinds was increased by HRW. These changes resulted in the alternation of (iso)flavonoids profile, with the effective promotion of isoflavone and flavanone subfamilies in particular. These compounds included afromosin, afromosin 7-O-β-D-glucoside-malonate, daidzein, formononetin 7-O-β-D-glucoside-6ʹʹ-O-malonate, garbanzol, matteucin and naringenin. In vitro tests further showed that the HRW-modulated (iso)flavonoids profile upon UVB stress possessed advanced ROS-quenching and antioxidant capacities under our experimental conditions. Meanwhile, UVB-triggered upregulation in the transcription levels of (iso)flavonoids biosynthetic-related genes were substantially strengthened by HRW. The activities and related transcripts of representative antioxidant enzymes were also induced. Taken together, our findings indicate that HRW confers tolerance to UVB-induced oxidative damage partially by the manipulation of (iso)flavonoids metabolism and antioxidant defence in Medicago sativa L.


Sign in / Sign up

Export Citation Format

Share Document