scholarly journals Microbending Experiments on Pure Magnesium with Nonbasal Slip Orientation

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1434 ◽  
Author(s):  
Jan Maňák ◽  
David Vokoun

In the present study, in situ microbending experiments on magnesium single crystalline microcantilevers are presented. Microcantilevers with pentagonal cross-section were fabricated by focus ion beam. Two basic crystallographic orientations of the microcantilevers were investigated: {0001} and {10-10}, i.e., the c-axis perpendicular to and parallel with the cantilever top surface, respectively. After bending, the longitudinal sections of the microcantilevers were analyzed using electron backscatter diffraction to investigate the crystal lattice rotations and accumulated deformations. The stress levels in the loaded cantilevers are strongly dependent on the crystal orientation. Extension twins were found in the {10-10} cantilevers.

2011 ◽  
Vol 1324 ◽  
Author(s):  
H.R. Moutinho ◽  
R.G. Dhere ◽  
C.-S. Jiang ◽  
M.M. Al-Jassim

ABSTRACTElectron backscatter diffraction (EBSD) provides information on the crystallographic structure of a sample, while scanning Kelvin probe microscopy (SKPM) provides information on its electrical properties. The advantage of these techniques is their high spatial resolution, which cannot be attained with any other techniques. However, because these techniques analyze the top layers of the sample, surface or cross section features directly influence the results of the measurements, and sample preparation is a main step in the analysis.In this work we investigated different methods to prepare cross sections of CdTe/CdS solar cells for EBSD and SKPM analyses. We observed that procedures used to prepare surfaces for EBSD are not suitable to prepare cross sections, and we were able to develop a process using polishing and ion-beam milling. This process resulted in very good results and allowed us to reveal important aspects of the cross section of the CdTe films. For SKPM, polishing and a light ion-beam milling resulted in cross sections that provided good data. We were able to observe the depletion region on the CdTe film and the p-n junction as well as the interdiffusion layer between CdTe and CdS. However, preparing good-quality cross sections for SKPM is not a reproducible process, and artifacts are often observed.


2012 ◽  
Vol 18 (S2) ◽  
pp. 1794-1795
Author(s):  
W.M. Kane

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


Author(s):  
Frank Altmann ◽  
Jens Beyersdorfer ◽  
Jan Schischka ◽  
Michael Krause ◽  
German Franz ◽  
...  

Abstract In this paper the new Vion™ Plasma-FIB system, developed by FEI, is evaluated for cross sectioning of Cu filled Through Silicon Via (TSV) interconnects. The aim of the study presented in this paper is to evaluate and optimise different Plasma-FIB (P-FIB) milling strategies in terms of performance and cross section surface quality. The sufficient preservation of microstructures within cross sections is crucial for subsequent Electron Backscatter Diffraction (EBSD) grain structure analyses and a high resolution interface characterisation by TEM.


2009 ◽  
Vol 24 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Rester ◽  
C. Motz ◽  
R. Pippan

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.


2021 ◽  
Vol 54 (2) ◽  
pp. 513-522
Author(s):  
Edward L. Pang ◽  
Christopher A. Schuh

Accurately indexing pseudosymmetric materials has long proven challenging for electron backscatter diffraction. The recent emergence of intensity-based indexing approaches promises an enhanced ability to resolve pseudosymmetry compared with traditional Hough-based indexing approaches. However, little work has been done to understand the effects of sample position and orientation on the ability to resolve pseudosymmetry, especially for intensity-based indexing approaches. Thus, in this work the effects of crystal orientation and detector distance in a model tetragonal ZrO2 (c/a = 1.0185) material are quantitatively investigated. The orientations that are easiest and most difficult to correctly index are identified, the effect of detector distance on indexing confidence is characterized, and these trends are analyzed on the basis of the appearance of specific zone axes in the diffraction patterns. The findings also point to the clear benefit of shorter detector distances for resolving pseudosymmetry using intensity-based indexing approaches.


Microscopy ◽  
2020 ◽  
Author(s):  
Kaneaki Tsuzazki ◽  
Motomichi Koyama ◽  
Ryosuke Sasaki ◽  
Keiichiro Nakafuji ◽  
Kazushi Oie ◽  
...  

Abstract Microstructural changes during the martensitic transformation from face-centred cubic (FCC) to body-centred cubic (BCC) in an Fe-31Ni alloy were observed by scanning electron microscopy (SEM) with a newly developed Peltier stage available at temperatures to  −75°C. Electron channelling contrast imaging (ECCI) was utilized for the in situ observation during cooling. Electron backscatter diffraction analysis at ambient temperature (20°C) after the transformation was performed for the crystallographic characterization. A uniform dislocation slip in the FCC matrix associated with the transformation was detected at −57°C. Gradual growth of a BCC martensite was recognized upon cooling from −57°C to −63°C.


2019 ◽  
Vol 196 ◽  
pp. 00057
Author(s):  
Evgeny Victorovich Boyko ◽  
Ilya Alexeevich Kostogrud ◽  
Dmitry Vladimirovich Smovzh ◽  
Pavel Evgenyevich Matochkin

The paper presents the technique of qualitative assessment of the strength of graphene layers adhesion to the surface of a copper substrate, where they are formed. The technique uses a complex of approved analytical methods: electron backscatter diffraction (EBSD), Raman spectroscopy and optical microscopy. The technique was tested on multilayer graphene grown on a copper grain with crystal orientation (111). The presented method can be used to assess the effectiveness of the methods of graphene transfer from grains with different crystal orientation.


Sign in / Sign up

Export Citation Format

Share Document