scholarly journals Overview of Carbon Nanotubes for Biomedical Applications

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 624 ◽  
Author(s):  
Juliette Simon ◽  
Emmanuel Flahaut ◽  
Muriel Golzio

The unique combination of mechanical, optical and electrical properties offered by carbon nanotubes has fostered research for their use in many kinds of applications, including the biomedical field. However, due to persisting outstanding questions regarding their potential toxicity when considered as free particles, the research is now focusing on their immobilization on substrates for interface tuning or as biosensors, as load in nanocomposite materials where they improve both mechanical and electrical properties or even for direct use as scaffolds for tissue engineering. After a brief introduction to carbon nanotubes in general and their proposed applications in the biomedical field, this review will focus on nanocomposite materials with hydrogel-based matrices and especially their potential future use for diagnostics, tissue engineering or targeted drug delivery. The toxicity issue will also be briefly described in order to justify the safe(r)-by-design approach offered by carbon nanotubes-based hydrogels.

2021 ◽  
Vol 19 (2) ◽  
pp. 271
Author(s):  
Yu-Ting Zuo ◽  
Hong-Jun Liu

Graphene and carbon nanotubes have a Steiner minimum tree structure, which endows them with extremely good mechanical and electronic properties. A modified Hall-Petch effect is proposed to reveal the enhanced mechanical strength of the SiC/graphene composites, and a fractal approach to its mechanical analysis is given.  Fractal laws for the electrical conductivity of graphene, carbon nanotubes and graphene/SiC composites are suggested using the two-scale fractal theory. The Steiner structure is considered as a cascade of a fractal pattern. The theoretical results show that the two-scale fractal dimensions and the graphene concentration play an important role in enhancing the mechanical and electrical properties of graphene/SiC composites. This paper sheds a bright light on a new era of the graphene-based materials.


Synlett ◽  
2021 ◽  
Author(s):  
Chao Lu ◽  
Xi Chen

Flexible strain sensors with superior flexibility and high sensitivity are critical to artificial intelligence. And it is favorable to develop highly sensitive strain sensors with simple and cost effective method. Here, we have prepared carbon nanotubes enhanced thermal polyurethane nanocomposites with good mechanical and electrical properties for fabrication of highly sensitive strain sensors. The nanomaterials have been prepared through simple but effective solvent evaporation method, and the cheap polyurethane has been utilized as main raw materials. Only a small quantity of carbon nanotubes with mass content of 5% has been doped into polyurethane matrix with purpose of enhancing mechanical and electrical properties of the nanocomposites. As a result, the flexible nanocomposite films present highly sensitive resistance response under external strain stimulus. The strain sensors based on these flexible composite films deliver excellent sensitivity and conformality under mechanical conditions, and detect finger movements precisely under different bending angles.


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Boyang Huang

Abstract Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.


2010 ◽  
Vol 441 ◽  
pp. 235-267 ◽  
Author(s):  
Blanca González ◽  
Carlos López de Laorden ◽  
Montserrat Colilla ◽  
Maria Vallet-Regí

Dendrimers are a relatively new class of molecules that display a variety of potentially useful architecture-induced properties. In this chapter, we firstly present a general description of this interesting class of macromolecules, making special emphasis in their current biomedical applications. The combination of dendrimers with ceramics, traditionally used in the biomedical field, provides synergistic features and functions to the resulting hybrid materials. After the dendrimers introduction, an overall description of mesoporous silicas, iron oxide nanoparticles and carbon nanotubes bioceramics, is presented. Finally, recent research examples of dendrimer-functionalized ceramics, both from the synthetic and biomedical applicative points of view, are reviewed.


2013 ◽  
Vol 86 (3) ◽  
pp. 423-448 ◽  
Author(s):  
Liliane Bokobza

ABSTRACT The reinforcement of elastomeric materials by addition of mineral fillers represents one of the most important aspects in the field of rubber science and technology. The improvement in mechanical properties arises from hydrodynamic effects depending mainly on the amount of filler and the aspect ratio of the particles and also on polymer–filler interactions depending on the surface characteristics of the filler particles and the chemical nature of the polymer. The past few years have seen the extensive use of nanometer-scale particles of different morphologies on account of the small size of the filler and the corresponding increase in the surface area that allow a considerable increase in mechanical properties even at very low filler loading. Among these nanoparticles, spherical particles (such as silica or titania) generated in situ by the sol-gel process and carbon nanotubes are typical examples of materials used as a nanosize reinforcing additive. Specific features of filled elastomers are discussed through the existing literature and through results of the author's research based on poly(dimethylsiloxane) filled with spherical silica or titania particles and on styrene–butadiene rubber filled with multiwall carbon nanotubes. The reinforcing ability of each type of filler is discussed in terms of morphology, state of dispersion (investigated by transmission electron microscopy, atomic force microscopy, small-angle neutron scattering), and mechanical and electrical properties. In addition, the use of molecular spectroscopies provides valuable information on the polymer–filler interface. Spherical silica and titania spherical particles are shown to exhibit two distinct morphologies, two different polymer–filler interfaces that influence the mechanical properties of the resulting materials. The superiority of carbon nanotubes over carbon black for mechanical reinforcement and electrical conduction is mainly attributed to their large aspect ratio rather than to strong polymer–filler interactions. The use of hybrid fillers (carbon nanotubes in addition to carbon black or silica, for example) has been shown to give promising results by promoting an enhancement of mechanical and electrical properties with regard to each single filler.


Sign in / Sign up

Export Citation Format

Share Document