scholarly journals Effect of Hot-Alkali Treatment on the Structure Composition of Jute Fabrics and Mechanical Properties of Laminated Composites

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1386 ◽  
Author(s):  
Xue Wang ◽  
Lulu Chang ◽  
Xiaolong Shi ◽  
Lihai Wang

In this study, jute fabrics/epoxy-laminated composites were fabricated via a simple and effective manual layering. Hot-alkali treatment was used to pretreat jute fabrics to improve their interfacial compatibility. The effects of hot-alkali treatment with five concentrations (2%, 4%, 6%, 8% and 10%) on the composition, crystallinity and surface morphology of jute fibers, were analyzed with the aids of Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and the scanning electron microscope (SEM). The mechanical properties (tensile and flexural) of laminated composites, and the morphology of the tensile fracture surface, were analyzed. The results indicated that the crystallinity index (CI) and crystallite size (CS) of the cellulose in jute fibers were improved, and there were three stages for CI and CS with the increase of alkali concentrations. Hot-alkali treatment improved the mechanical properties of laminated composites, especially for the 6% NaOH-treated jute fabric reinforced. The tensile strength, flexural strength, tensile modulus and flexural modulus of 6% NaOH-treated fabrics reinforced composites were enhanced by 37.5%, 72.3%, 23.2% and 72.2%, respectively, as compared with those of untreated fabrics reinforced composites. The fiber pull-out and the gaps of the tensile fracture surface were reduced after hot-alkali treatment.

2010 ◽  
Vol 146-147 ◽  
pp. 674-677
Author(s):  
Tian Han Xu ◽  
Yao Rong Feng ◽  
Sheng Yin Song ◽  
Zhi Hao Jin

An investigation into the mechanical properties of K55,N80 and P110 steels was carried out for casing-drilling technology. The obvious presence of bright facets on broken K55 Charpy V-Notch (CVN) sample surfaces was indicative of the effect of microstructure on the cleavage fracture. The appearing of bright facet surfaces of K55 was attributed to the microstructure of ferrite and pearlite. The fracture surfaces of N80 and P110 CVN samples included quasi-cleavage fracture mechanism and dimple fracture mechanism, respectively. The tensile fracture surface of all three types of casing-drilling steels included dimple fracture mechanism, both the N80 and P110 specimen show higher UTS and impact energy values compared to the K55 specimen.


2018 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Henny Pratiwi

This research aims to investigate the effects of albasia wood filler as alternative reinforcement for extravagant and non-renewable filler being used in epoxy composites. The filler size used was 30 mesh and various filler volume fractions were 10, 20, 30 and 40 percent. Composites were manufactured using hand lay-up method. Properties such as tensile strength, elongation, modulus elasticity and strain energy absorption were determined based on ASTM standard. The results show that filler volume content significantly affects the tensile properties and impact strength of albasia wood-epoxy composites. The optimum tensile properties are achieved when 10 percent filler is added into epoxy matrix. The impact test also shows the same results. Further addition of filler decreases the mechanical properties of composites due to the existence of weak interfacial interaction between the albasia wood filler and polymer matrix for higher filler volume concentration beyond 10 vol. %. The scanning electron micrograph reveals that there are voids and pull-out mechanism on tensile fracture surface which are the cause of the composites failure.


2011 ◽  
Vol 410 ◽  
pp. 122-125 ◽  
Author(s):  
J.M. Byeon ◽  
Gi Beop Nam ◽  
J.W. Kim ◽  
B.S. Kim ◽  
Jung I. Song

In this study, Jute fibers reinforced polypropylene (JFRP) composites were manufactured by injection molding technique. Prior to fabrication of composites, fiber surface was treated by Alkali and Plasma for a rise in fibers properties. Furthermore, after the alkali treatment attempt plasma treatment for the fiber surface treatment to obtain a batter value. In order to improve the affinity and adhesion between fibers and thermoplastic matrices during manufacturing, Maleic anhydride (MA) as a coupling agent have been employed. Untreated and treated surfaces of jute fibers were characterized using SEM. Tensile and flexural tests were carried out to evaluate the composite mechanical properties. Tensile test indicated that 3% of the alkali treatment and 2min plasma treatment fiber has highest tensile strength.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2648 ◽  
Author(s):  
Pooria Khalili ◽  
Brina Blinzler ◽  
Roland Kádár ◽  
Roeland Bisschop ◽  
Michael Försth ◽  
...  

The work involves fabrication of natural fibre/Elium® composites using resin infusion technique. The jute fabrics were treated using phosphorus-carbon based flame retardant (FR) agent, a phosphonate solution and graphene nano-platelet (GnP), followed by resin infusion, to produce FR and graphene-based composites. The properties of these composites were compared with those of the Control (jute fabric/Elium®). As obtained from the cone calorimeter and Fourier transform infrared spectroscopy, the peak heat release rate reduced significantly after the FR and GnP treatments of fabrics whereas total smoke release and quantity of carbon monoxide increased with the incorporation of FR. The addition of GnP had almost no effect on carbon monoxide and carbon dioxide yield. Dynamic mechanical analysis demonstrated that coating jute fabrics with GnP particles led to an enhanced glass transition temperature by 14%. Scanning electron microscopy showed fibre pull-out locations in the tensile fracture surface of the laminates after incorporation of both fillers, which resulted in reduced tensile properties.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 769 ◽  
Author(s):  
Xue Wang ◽  
Lihai Wang ◽  
Wenwen Ji ◽  
Quanling Hao ◽  
Guanghui Zhang ◽  
...  

In this study, jute fabrics were used to reinforce epoxy resin to prepare laminated composites. KH-560 silane coupling agent modification was used to improve the interfacial compatibility between fibers and epoxy. The effects of different immersion times (0 min, 10 min, 30 min, 60 min, 90 min, and 120 min) on the jute fiber’s element content, crystal structure, and thermal stability, and the mechanical properties of laminated composites were studied. X-ray diffractometry (XRD) analysis showed that the KH-560 modification improved the crystallinity index (CI) and crystallite sizes (CS) of jute fibers. Scanning electron microscopy (SEM) analysis of the tensile fracture surfaces revealed a thick epoxy on the modified pulled fiber surfaces. Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectrometer (EDS) analysis identified the presence of silicon and C–O–Si/Si–O–Si cross-linked structures on the surface of modified jute fibers. These cross-linked structures improved the thermal stability and mechanical properties of the laminated composites. When the immersion time was 60 min, the CI, CS, tensile strength, tensile modulus, flexural strength, and flexural modulus of the modified samples were 42.39%, 3.62 nm, 34.6 ± 1.1 MPa, 2.11 ± 0.12 GPa, 83.7 ± 1.8 MPa, and 4.08 ± 0.12 GPa, respectively, which were better than that of unmodified and other modified composites.


2012 ◽  
Vol 430-432 ◽  
pp. 598-601
Author(s):  
Chun Li ◽  
Jia Xuan Wang ◽  
Hua Qing Miao

In this paper, based on the liquid forging part flange LY12, the influence of specific pressure on the organization and performance of the liquid forging part was studied through microstructure, mechanical properties and tensile fracture surface analysis methods, this article also has some guiding significance to the formulation of the best liquid forging process parameters. The results show that the tensile strength, hardness and elongation of the parts raise with the specific pressure increasing, the organization has also been significant refinement and improvement.


2019 ◽  
Vol 28 (6) ◽  
pp. 388-397
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

In this work, partially biodegradable green composites have been developed with the help of compression molding technique. Jute fibers were selected as a reinforcement and epoxy resin as matrix material. The influence of alkali treatment on various mechanical properties of jute/epoxy composites was investigated, with concentrations ranging from 1%, 3%, 5%, 7%, and 9% NaOH solution. Various test results indicate that with an increase in concentration, tensile and flexural strength increases up to 5% concentration of NaOH, thereafter both the properties decrease, but impact strength increases up to 7% concentration and thereafter decreases. The results of mechanical characterizations were further validated through the study of morphology with scanning electron microscopy and Fourier transform infrared analysis. The optimal concentration of 5% concentration for alkali treatment of fibers have been suggested.


2016 ◽  
Vol 47 (5) ◽  
pp. 640-655 ◽  
Author(s):  
Ammayappan Lakshmanan ◽  
Rakesh Kumar Ghosh ◽  
Swati Dasgupta ◽  
Sujay Chakraborty ◽  
Prasanta Kumar Ganguly

Jute fiber has poor compatibility with hydrophobic thermosetting polymeric resin for the development of a biocomposite. In this present study, plain weave jute fabric was treated with 1% sodium hydroxide (owf) in three different time (30, 60 and 90 minutes), temperature (30, 40 and 50℃) and material-to-liquor ratio (1:5, 1:10 and 1:15) as per orthogonal array and the treated jute fabrics were used for the preparation of the biocomposite sheet by hand laying-cum-compression moulding method. Developed biocomposite sheets were evaluated for their mechanical properties as per ASTM standards and results were analyzed by Taguchi model to optimize the sodium hydroxide treatment condition. Results inferred that jute fabric reinforcement treated with 1% sodium hydroxide at 50℃ for 60 minutes in 1:10 material-to-liquor ratio could be the optimum condition to develop the biocomposite sheet with higher mechanical properties than other conditions.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1608-1614
Author(s):  
Jin Hak Kim ◽  
Tatsuo Tabaru ◽  
Hisatoshi Hirai

Niobium-base in-situ composite Nb-18Si-5Mo-5Hf-2C (in mol%) was prepared and heat-treated at 2070 K for 20 hour. The uni-axile tensile tests at high temperature ranges and the constant load tensile creep tests at 1570 K were performed. The specimen tensile-tested at 1470 K exhibited the excellent UTS of 450 MPa, and the brittle to ductile transition temperature is between 1470 and 1670 K. The specimens creep tested showed good creep strength; the stress exponent is about 5. The tensile fracture surface of the in-situ composite is complex and attributed to cleavage of the Nb 5 Si 3, Nb ss / Nb 5 Si 3 interface separation, ductile rupture of the Nb ss and correlations of these. On the otherhand, the fracture surface of creep tested consists of intergranular above 150 MPa and transgranular below 120 MPa with severely deformed Nb ss .


2007 ◽  
Vol 1 (1) ◽  
pp. 78-86 ◽  
Author(s):  
U. S. Ishiaku ◽  
X. Y. Yang ◽  
Y. W. Leong ◽  
H. Hamada ◽  
T. Semba ◽  
...  

An attempt was made at increasing both toughness and rigidity by simultaneous toughening and reinforcement. Natural fiber-reinforced biodegradable polyester blend composites were prepared from modified and unmodified biodegradable polyesters blends with surface-treated and untreated jute fibers by melt mixing and subsequent molding. The resulting cross-linked and uncross-linked poly(lactic acid) (PLA)/poly(caprolactone) (PCL)blends were used as the biodegradable polyester matrixes. Alkali treatment was performed as the surface treatments on the jute fiber. This study revealed that alkali treatment of the jute fiber improved the mechanical properties of the composites. The addition of dicumyl peroxide (DCP) also imparted significant changes to the PLA/PCL blend as revealed by thermal and dynamic mechanical analyses. Morphological observation of the DCP modified blend revealed the existence of a third phase at the boundary region of the PLA and PCL phases that could be termed the 'interphase,' while extensive plastic deformation of the tensile fracture surface of the DCP modified blend was observed. The crystalline nature of PLA and PCL are retained in the blend, while the presence of jute fibers interferes with cold crystallization.


Sign in / Sign up

Export Citation Format

Share Document