scholarly journals Exceptional Strengthening of Biodegradable Mg-Zn-Ca Alloys through High Pressure Torsion and Subsequent Heat Treatment

Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2460 ◽  
Author(s):  
Jelena Horky ◽  
Abdul Ghaffar ◽  
Katharina Werbach ◽  
Bernhard Mingler ◽  
Stefan Pogatscher ◽  
...  

In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 Tm led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 849 ◽  
Author(s):  
Praveen Sathiyamoorthi ◽  
Jae Bae ◽  
Peyman Asghari-Rad ◽  
Jeong Park ◽  
Jung Kim ◽  
...  

Annealing of severely plastic deformed materials is expected to produce a good combination of strength and ductility, which has been widely demonstrated in conventional materials. In the present study, high-pressure torsion processed CoCrNi medium entropy alloy consisting of a single face-centered cubic (FCC) phase with a grain size of ~50 nm was subjected to different annealing conditions, and its effect on microstructure and mechanical behavior was investigated. The annealing of high-pressure torsion processed CoCrNi alloy exhibits partial recrystallization and near full recrystallization based on the annealing temperature and time. The samples annealed at 700 °C for 2 min exhibit very fine grain size, a high fraction of low angle grain boundaries, and high kernel average misorientation value, indicating partially recrystallized microstructure. The samples annealed for a longer duration (>2 min) exhibit relatively larger grain size, a low fraction of low angle grain boundaries, and low kernel average misorientation value, indicating nearly full recrystallized microstructure. The annealed samples with different microstructures significantly influence the uniform elongation, tensile strength, and work hardening rate. The sample annealed at 700 °C for 15 min exhibits a remarkable combination of tensile strength (~1090 MPa) and strain to failure (~41%).


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


2008 ◽  
Vol 584-586 ◽  
pp. 470-474 ◽  
Author(s):  
Egor Prokofiev ◽  
Dmitriy Gunderov ◽  
Alexandr Lukyanov ◽  
Vladimir Pushin ◽  
Ruslan Valiev

Amorphous-nanocrystalline Ti49.4Ni50.6 alloy in the shape of a disc 20 mm in diameter has been successfully produced using high pressure torsion (HPT). Application of HPT and annealing at temperatures of 300–550°C resulted in formation of a nanocrystalline (NC) structure with the grain size (D) about 20–300 nm. The HPT samples after annealing at Т = 400°C with the D= 20 nm possess high yield stress and high ultimate tensile strength (more than 2000 MPa). There is an area of strain-induced transformation B2-B19’ on the tensile curve of the samples with the grain size D =20 nm. The stress of martensitic transformation (σm) of samples is 450 MPa, which is three times higher than σm in the initial coarse-grained state (σm ≈ 160 MPa). The HPT samples after annealing at Т = 550°C with the D= 300 nm possess high ductility (δ>60 %) and high ultimate tensile strength (about 1000 MPa).


2021 ◽  
Vol 1016 ◽  
pp. 338-344
Author(s):  
Wan Ji Chen ◽  
Jie Xu ◽  
De Tong Liu ◽  
De Bin Shan ◽  
Bin Guo ◽  
...  

High-pressure torsion (HPT) was conducted under 6.0 GPa on commercial purity titanium up to 10 turns. An ultrafine-grained (UFG) pure Ti with an average grain size of ~96 nm was obtained. The thermal properties of these samples were studied by using differential scanning calorimeter (DSC) which allowed the quantitative determination of the evolution of stored energy, the recrystallization temperatures, the activation energy involved in the recrystallization of the material and the evolution of the recrystallized fraction with temperature. The results show that the stored energy increases, beyond which the stored energy seems to level off to a saturated value with increase of HPT up to 5 turns. An average activation energy of about 101 kJ/mol for the recrystallization of 5 turns samples was determined. Also, the thermal stability of the grains of the 5 turns samples with subsequent heat treatments were investigated by microstructural analysis and Vickers microhardness measurements. It is shown that the average grain size remains below 246 nm when the annealing temperature is below 500 °C, and the size of the grains increases significantly for samples at the annealing temperature of 600 °C.


2011 ◽  
Vol 194-196 ◽  
pp. 712-715 ◽  
Author(s):  
Zi Ling Xie ◽  
Lin Zhu Sun ◽  
Fang Yang ◽  
Xiao Bing Li

Experiments were conducted on copper subjected to High Pressure Torsion to investigate the evolution of microstructure and microhardness with shear strain, γ. Observations have been carried out in the longitudinal section for a proper demonstration of the structure morphology. An elongated dislocation cell/subgrain structure was observed at relatively low strain level. With increasing strain, the elongated subgrains transformed into elongated grains and finally into equiaxed grains with high angle grain boundaries. Measurements showed the hardness increases with increasing γ then tends to saturations when γ >5. The variation tendency of microhardness with γ can be simulated by Voce-type equation.


2010 ◽  
Vol 25 (7) ◽  
pp. 1388-1397 ◽  
Author(s):  
Péter Henits ◽  
Ádám Révész ◽  
Erhard Schafler ◽  
Péter J. Szabó ◽  
János L. Lábár ◽  
...  

Al85Gd8Ni5Co2 metallic glass was subjected to partial devitrification by high-pressure torsion, continuous heat treatment, and isothermal annealing. The fully amorphous alloy exhibits a well-defined transition in its first devitrification product during isothermal heat treatments from τm + α-Al phase mixture to primary α-Al by increasing the annealing temperature above 555 K. This thermal sensitivity predestinates the composition to identify the controversial thermal contribution of the plastic deformation in metallic glasses. Thermal stability and structure of the partially devitrified samples were systematically analyzed and compared by calorimetry, x-ray diffraction, and electron microscopy. It seems that the effect of severe deformation cannot be singled out by a simple isothermal heat treatment; i.e., high-pressure torsion acts as a spectrum of heat treatments performed at different annealing temperatures.


2017 ◽  
Vol 898 ◽  
pp. 124-130 ◽  
Author(s):  
Shu Min Xu ◽  
Xin Ying Teng ◽  
Xing Jing Ge ◽  
Jin Yang Zhang

In this paper, the microstructure and mechanical properties of the as-cast and heat treatment of Mg-Zn-Nd alloy was investigated. The alloy was manufactured by a conventional casting method, and then subjected to a heat treatment. The results showed that the microstructure of as-cast alloy was comprised of α-Mg matrix and Mg12Nd phase. With increase of Nd content, the grain size gradually decreased from 25.38 μm to 9.82 μm. The ultimate tensile strength and elongation at room temperature of the Mg94Zn2Nd4 alloy can be reached to 219.63 MPa and 5.31%. After heat treatment, part of the second phase dissolved into the magnesium matrix and the grain size became a little larger than that of the as-cast. The ultimate tensile strength was declined by about 2.5%, and the elongation was increased to 5.47%.


Sign in / Sign up

Export Citation Format

Share Document