scholarly journals Indium Incorporation into InGaN Quantum Wells Grown on GaN Narrow Stripes

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2583
Author(s):  
Marcin Sarzyński ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Grzegorz Targowski ◽  
Robert Czernecki ◽  
...  

InGaN quantum wells were grown using metalorganic chemical vapor phase epitaxy (vertical and horizontal types of reactors) on stripes made on GaN substrate. The stripe width was 5, 10, 20, 50, and 100 µm and their height was 4 and 1 µm. InGaN wells grown on stripes made in the direction perpendicular to the off-cut had a rough morphology and, therefore, this azimuth of stripes was not further explored. InGaN wells grown on the stripes made in the direction parallel to the GaN substrate off-cut had a step-flow-like morphology. For these samples (grown at low temperatures), we found out that the InGaN growth rate was higher for the narrower stripes. The higher growth rate induces a higher indium incorporation and a longer wavelength emission in photoluminescence measurements. This phenomenon is very clear for the 4 µm high stripes and less pronounced for the shallower 1 µm high stripes. The dependence of the emission wavelength on the stripe width paves a way to multicolor emitters.

2013 ◽  
Vol 102 (9) ◽  
pp. 091905 ◽  
Author(s):  
Yuji Zhao ◽  
Feng Wu ◽  
Chia-Yen Huang ◽  
Yoshinobu Kawaguchi ◽  
Shinichi Tanaka ◽  
...  

2014 ◽  
Vol 104 (15) ◽  
pp. 151901 ◽  
Author(s):  
Feng Wu ◽  
Yuji Zhao ◽  
Alexey Romanov ◽  
Steven P. DenBaars ◽  
Shuji Nakamura ◽  
...  

2011 ◽  
Vol 9 (3-4) ◽  
pp. 700-703 ◽  
Author(s):  
L. Schade ◽  
U. T. Schwarz ◽  
T. Wernicke ◽  
S. Ploch ◽  
M. Weyers ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Jianjun Zhu ◽  
...  

Abstract Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mikolaj Grabowski ◽  
Ewa Grzanka ◽  
Szymon Grzanka ◽  
Artur Lachowski ◽  
Julita Smalc-Koziorowska ◽  
...  

AbstractThe aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.


2021 ◽  
Vol 118 (18) ◽  
pp. 182102
Author(s):  
Xiaoyu Zhao ◽  
Bin Tang ◽  
Liyan Gong ◽  
Junchun Bai ◽  
Jiafeng Ping ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 7476-7484
Author(s):  
Julita Smalc-Koziorowska ◽  
Ewa Grzanka ◽  
Artur Lachowski ◽  
Roman Hrytsak ◽  
Mikolaj Grabowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document