scholarly journals The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4138
Author(s):  
Chenggang He ◽  
Jihua Liu ◽  
Wenjian Wang ◽  
Qiyue Liu

The purpose of this work is to construct a tribo-fatigue damage map of high-speed railway wheel material under different tangential forces and contact pressure conditions through JD-1 testing equipment. The results indicate that the wear rate of the wheel material varies with tangential force and contact pressure. The wear mapping of the wheel material is constructed and divided into three regions: slight wear, severe wear, and destructive wear, based on the wear rate under each test condition. With an increase in tangential force and contact pressure, the maximum crack length and average crack length of the wheel material increases. According to the surface damage morphologies and corresponding statistical results of average crack length of wheel material under each experiment condition, a tribo-fatigue damage map is constructed and divided into three regions: slight fatigue damage region, fatigue damage region, and severe fatigue damage region. Fatigue cracks initiate on the wheel specimen surface. Some cracks may propagate into material and fracture under cyclic rolling contact; some cracks may grow into inner material with a certain depth, and then turn toward the surface to form material flaking; some cracks may always propagate parallel to the wheel roller surface.

Author(s):  
K Six ◽  
T Mihalj ◽  
C Marte ◽  
D Künstner ◽  
S Scheriau ◽  
...  

In this study, T-Gamma and Wedge models have been compared with each other for the prediction of surface-initiated rolling contact fatigue cracks on rail surfaces. Both models are able to account for different observed rolling contact fatigue-wear regimes in tracks, but with very different physical backgrounds. The T-Gamma model uses empirically determined damage functions by introducing a relationship between the wear number (T-Gamma) and the rolling contact fatigue damage increment. Different rolling contact fatigue-wear regimes are considered in this empirical approach based on the idea that initiated cracks get partially or fully removed by the wear mechanism, not accounting for the full complexity of the occurring tribological phenomena. The Wedge model represents a physical approach, where contact stresses and its impact on plastic deformations and related material anisotropy are considered. Thus, the prediction of different rolling contact fatigue-wear regimes is based on these physical relationships, where plastic shear deformations in the near-surface layer play a key role. For comparison, the wheel–rail contact data from stochastic multibody dynamics simulations of a metro vehicle with conventional bogie technology running in three curve radii have been used. While the T-Gamma model always predicts the same rolling contact fatigue damage increment for a given T-Gamma value, the Wedge model shows a scattering of the predicted rolling contact fatigue damage increments when plotting them over T-Gamma because of the explicit consideration of contact stresses. Thus, each scenario consisting, for example, of certain vehicles, curve radius, wheel–rail profile combination, friction conditions, rail material, etc. needs its own damage function in the T-Gamma world. This should be kept in mind when applying the standard T-Gamma model to scenarios which differ significantly from the scenario it has been parameterised for.


Author(s):  
Ирина Георгиевна Горячева ◽  
Елена Владимировна Торская

Рассматривается влияние остаточных напряжений, формирующихся при различных видах поверхностной обработки элементов пар трения, на скорость накопления контактно-усталостных повреждений, возникающих при циклическом нагружении поверхностей взаимодействующих тел в условиях трения качения при наличии поверхностного изнашивания. Исследовано влияние относительного проскальзывания, коэффициента трения скольжения, величины остаточных напряжений на распределение амплитудных значений максимальных касательных напряжений. Полученные результаты использованы для анализа влияния поля остаточных напряжений и скорости поверхностного изнашивания на процесс накопления контактно-усталостных повреждений. Residual stresses are formed during various types of surface treatment of elements of friction pairs. The effect of the residual stresses on the rate of fatigue damage accumulation is considered for the case of cyclic rolling contact in the presence of surface wear. The effect of relative slippage, friction coefficient, and residual stresses on the distribution of the amplitude values of the principal shear stress is studied. The results are used to analyze the effect of the residual stresses and the surface wear rate on the fatigue damage accumulation.


2019 ◽  
Vol 78 (3) ◽  
pp. 141-148
Author(s):  
V. I. Sakalo ◽  
A. V. Sakalo

The development of the methods for modeling the processes of accumulation of the rolling contact fatigue damage and wear of the wheels of the railway rolling stock and the rails is particularly relevant due to the increase in the number of damage in the recent times. The work is underway to improve the chemical composition and the technology of production of the wheel and rail steels in order to improve their mechanical properties and ability to resist the action of the cyclic loads. The methods of modeling allow predict the possibility of initiation of the fatigue cracks during operation with the sufficient accuracy in the short time. The selection of the contact fatigue criterion and the mathematical apparatus for calculating the stresses at points in the area adjacent to the contact patch to obtain the numerical values of the criterion components is the most important task in the development of modeling methods. The article focuses on the approaches based on the Dang Van criterion and the shakedown diagram for a material undergoing to the action of cyclic loads, which are widely used to assess the rolling contact fatigue of the wheels and rails. The assumptions that are used in the development of the algorithms concerning the models of the contacting bodies, the shape of the contact patch, the distribution of the contact pressures and the tangential forces are considered. The approach using the criterion — the amplitude value of the maximal shear stress is also considered. The example of modeling the process of accumulation of the rolling contact fatigue damage in the wheel of the freight car is given. The results of modeling are presented in the form of the isolines of the criterion values and the accumulated damage in the area adjacent to the contact patch. This work was supported by the Russian Foundation for Basic Research under Grant [17-01-00815A].


2021 ◽  
Vol 11 (3) ◽  
pp. 1003
Author(s):  
Christoph Tuschl ◽  
Beate Oswald-Tranta ◽  
Sven Eck

Inductive thermography is a non-destructive testing method, whereby the specimen is slightly heated with a short heating pulse (0.1–1 s) and the temperature change on the surface is recorded with an infrared (IR) camera. Eddy current is induced by means of high frequency (HF) magnetic field in the surface ‘skin’ of the specimen. Since surface cracks disturb the eddy current distribution and the heat diffusion, they become visible in the IR images. Head checks and squats are specific types of damage in railway rails related to rolling contact fatigue (RCF). Inductive thermography can be excellently used to detect head checks and squats on rails, and the method is also applicable for characterizing individual cracks as well as crack networks. Several rail pieces with head checks, with artificial electrical discharge-machining (EDM)-cuts and with a squat defect were inspected using inductive thermography. Aiming towards rail inspection of the track, 1 m long rail pieces were inspected in two different ways: first via a ‘stop-and-go’ technique, through which their subsequent images are merged together into a panorama image, and secondly via scanning during a continuous movement of the rail. The advantages and disadvantages of both methods are compared and analyzed. Special image processing tools were developed to automatically fully characterize the rail defects (average crack angle, distance between cracks and average crack length) in the recorded IR images. Additionally, finite element simulations were used to investigate the effect of the measurement setup and of the crack parameters, in order to optimize the experiments.


2014 ◽  
Vol 891-892 ◽  
pp. 1711-1716 ◽  
Author(s):  
Loic Signor ◽  
Emmanuel Lacoste ◽  
Patrick Villechaise ◽  
Thomas Ghidossi ◽  
Stephan Courtin

For conventional materials with solid solution, fatigue damage is often related to microplasticity and is largely sensitive to microstructure at different scales concerning dislocations, grains and textures. The present study focuses on slip bands activity and fatigue crack initiation with special attention on the influence of the size, the morphology and the crystal orientation of grains and their neighbours. The local configurations which favour - or prevent - crack initiation are not completely identified. In this work, the identification and the analysis of several crack initiation sites are performed using Scanning Electron Microscopy and Electron Back-Scattered Diffraction. Crystal plasticity finite elements simulation is employed to evaluate local microplasticity at the scale of the grains. One of the originality of this work is the creation of 3D meshes of polycrystalline aggregates corresponding to zones where fatigue cracks have been observed. 3D data obtained by serial-sectioning are used to reconstruct actual microstructure. The role of the plastic slip activity as a driving force for fatigue crack initiation is discussed according to the comparison between experimental observations and simulations. The approach is applied to 316L type austenitic stainless steels under low-cycle fatigue loading.


Author(s):  
Nihal Kottan ◽  
Gowtham N H ◽  
Bikramjit Basu

Abstract The wear of acetabular liner is one of the key factors determining the longevity and osseointegration of Total Hip Replacement (THR) implants. The long-term experimental measurements of wear in THR components are time and cost-intensive. A finite element (FE) model of a 32 mm Ceramic on Polymer system consisting of ZTA (Zirconia-toughened Alumina) femoral head and UHMWPE (Ultrahigh molecular weight polyethylene) liner was developed to predict the dynamic wear response of the liner. Archard-Lancaster equation, consisting of surface contact pressure, wear rate, and sliding distance, was employed to predict the wear in the liner. The contact pressure and wear at the articulating surface were found to decrease over time. A new computational method involving 3D point clouds from the FE analyzed results were used to construct wear maps. The model was able to predict the linear wear with relative errors ranging from 9% to 36% over 2 million cycles when compared to the published results. The increasing error percentage occurring primarily from the use of a constant wear rate was reduced to a maximum of 17% by introducing a correction factor. Volumetric wear rate was predicted with a maximum relative error of 7% with the implementation of the correction factor. When the model was implemented to study liners of diameters ranging from 28 mm to 36 mm, the linear wear was seen to decrease with an increase in femoral head diameter, which is in agreement with the clinical data.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Aditya A. Walvekar ◽  
Neil Paulson ◽  
Farshid Sadeghi ◽  
Nick Weinzapfel ◽  
Martin Correns ◽  
...  

Large bearings employed in wind turbine applications have half-contact widths that are usually greater than 1 mm. Previous numerical models developed to investigate rolling contact fatigue (RCF) require significant computational effort to study large rolling contacts. This work presents a new computationally efficient approach to investigate RCF life scatter and spall formation in large bearings. The modeling approach incorporates damage mechanics constitutive relations in the finite element (FE) model to capture fatigue damage. It utilizes Voronoi tessellation to account for variability occurring due to the randomness in the material microstructure. However, to make the model computationally efficient, a Delaunay triangle mesh was used in the FE model to compute stresses during a rolling contact pass. The stresses were then mapped onto the Voronoi domain to evaluate the fatigue damage that leads to the formation of surface spall. The Delaunay triangle mesh was dynamically refined around the damaged elements to capture the stress concentration accurately. The new approach was validated against previous numerical model for small rolling contacts. The scatter in the RCF lives and the progression of fatigue spalling for large bearings obtained from the model show good agreement with experimental results available in the open literature. The ratio of L10 lives for different sized bearings computed from the model correlates well with the formula derived from the basic life rating for radial roller bearing as per ISO 281. The model was then extended to study the effect of initial internal voids on RCF life. It was found that for the same initial void density, the L10 life decreases with the increase in the bearing size.


Sign in / Sign up

Export Citation Format

Share Document