scholarly journals ATR-FTIR Analysis and One-Week Stress Relaxation of Four Orthodontic Aligner Materials

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1868 ◽  
Author(s):  
Florina Jaggy ◽  
Spiros Zinelis ◽  
Georgios Polychronis ◽  
Raphael Patcas ◽  
Marc Schätzle ◽  
...  

The aim of this study was to estimate possible differences in the chemical composition and relaxation of orthodontic aligner materials. Four commercially available thermoplastic materials CAM (Scheu-Dental, Iserlohn, Germany), COP (Essix, Dentsply Raintree Essix Sarasota, FL, USA), DUR (Great Lakes Dental Technologies, Tonawanda, NY) and ERK (Erkodent Erich Kopp, Pfalzgrafenweiler Germany) were included in this study. Rectangular strips from each material were prepared according to the manufacturer’s instructions and subjected to attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and stress relaxation characterization. The reduction in applied stress (RAS) after one week was estimated and statistically analyzed by one-way ANOVA at the 0.05 level of significance. All specimens were subjected to optical microscopy before and after stress relaxation testing under transmittance polarized illumination. ATR-FTIR microscopy revealed that all materials are made of polyethylene terephthalate glycol (PETG) while no significant differences were identified in RAS values among materials tested, which ranged from 6%–10% (p ≥ 0.05). All samples illustrated the developments of shear bands during relaxation testing according to optical microscopy findings. The tested materials illustrated similar chemical composition and relaxation behavior and thus no differences in their clinical efficacy are anticipated.

2016 ◽  
pp. 3287-3297
Author(s):  
Tarek El Ashram ◽  
Ana P. Carapeto ◽  
Ana M. Botelho do Rego

Tin-bismuth alloy ribbons were produced using melt-spinning technique. The two main surfaces (in contact with the rotating wheel and exposed to the air) were characterized with Optical Microscopy and AFM, revealing that the surface exposed to the air is duller (due to a long-range heterogeneity) than the opposite surface. Also the XPS chemical composition revealed many differences between them both on the corrosion extension and on the total relative amounts of tin and bismuth. For instance, for the specific case of an alloy with a composition Bi-4 wt % Sn, the XPS atomic ratios Sn/Bi are 1.1 and 3.7 for the surface in contact with the rotating wheel and for the one exposed to air, respectively, showing, additionally, that a large segregation of tin at the surface exists (nominal ratio should be 0.073). This segregation was interpreted as the result of the electrochemical process yielding the corrosion products.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4384
Author(s):  
Mohd Aidy Faizal Johari ◽  
Asmawan Mohd Sarman ◽  
Saiful Amri Mazlan ◽  
Ubaidillah U ◽  
Nur Azmah Nordin ◽  
...  

Micro mechanism consideration is critical for gaining a thorough understanding of amorphous shear band behavior in magnetorheological (MR) solids, particularly those with viscoelastic matrices. Heretofore, the characteristics of shear bands in terms of formation, physical evolution, and response to stress distribution at the localized region have gone largely unnoticed and unexplored. Notwithstanding these limitations, atomic force microscopy (AFM) has been used to explore the nature of shear band deformation in MR materials during stress relaxation. Stress relaxation at a constant low strain of 0.01% and an oscillatory shear of defined test duration played a major role in the creation of the shear band. In this analysis, the localized area of the study defined shear bands as varying in size and dominantly deformed in the matrix with no evidence of inhibition by embedded carbonyl iron particles (CIPs). The association between the shear band and the adjacent zone was further studied using in-phase imaging of AFM tapping mode and demonstrated the presence of localized affected zone around the shear band. Taken together, the results provide important insights into the proposed shear band deformation zone (SBDZ). This study sheds a contemporary light on the contentious issue of amorphous shear band deformation behavior and makes several contributions to the current literature.


2013 ◽  
Vol 652-654 ◽  
pp. 749-752
Author(s):  
Dan Dan Yuan ◽  
Hong Jun Wu ◽  
Hai Xia Sheng ◽  
Xin Sui ◽  
Bao Hui Wang

In order to meet the need of separating oil from water in the settling tank of the oilfield, ClO2 treatment for oil-water transition layer in settling tank is introduced. The field test displayed that the technique was achieved by a good performance. For understanding the oxidation and mechanism, compositions of oil-water transition layer were comparatively studied for before/after ClO2-treatment in this paper.The experimental results show that the compositions before and after ClO2-treatment, including physical structure and chemical composition, were varied in the great extension. The physical structure, consisting of water, oil and solid phase, was reduced to less than 5% of water and 0.5% of solid particle and increased to 95% of oil in layer compared with before-treatment, easily leading to clearly separating water from oil. The chemical composition of iron sulfide and acid insoluble substance in solid phase was decreased to more than 90% while the carbonate was reduced more than 70% . After the treatment, the viscosity reduction of the water phase in the layer was reached to 50% after oxidation demulsification with ClO2. The chemistry was discussed based on the principles and experiments. Due to ClO2 destroying (oxidizing) the rigid interface membrane structure which is supported by natural surfactant, polymer and solid particles with interface-active materials, the action accelerates the separating of water and oil and sedimentation of insoluble residue of acid in the layer. By demonstrating the experimental data and discussion, we can effectively control the oxidation performance of chlorine dioxide, which is very meaningful for oilfield on the aspect of stable production of petroleum.


2015 ◽  
Vol 44 (5) ◽  
pp. 262-267 ◽  
Author(s):  
José Vitor Quinelli Mazaro ◽  
Luiz Miguel Minani ◽  
Adriana Cristina Zavanelli ◽  
Caroline Cantieri de Mello ◽  
Cleidiel Aparecido Araújo Lemos

AbstractIntroductionTemporary restorative materials are widely used, however, little is know about their color stability.Objectiveto evaluate the color stability of the following temporary restorative materials: acrylic and bis-acrylic resins after immersion in pigmenting solutions for different periods of storage.Material and methodFour materials were tested (Dêncor/Clássico, Protemp 4/3M ESPE; Structur 2 SC/Voco; Luxatemp AM Plus/DMG) and 30 test specimens (15 mm in diameter and 2 mm thick) per material were fabricated. They were divided according to the storage medium (artificial saliva, saliva + cola type soda, and saliva + coffee) and storage time intervals (2, 5, 7 and 15 days). Color measurements were made before and after immersions, with use of a spectrophotometer, by means of the CIE L*a*b* system. The data were analyzed by the analysis of variance and the Tukey Test, at a level of significance of 5%.ResultAcrylic resin presented greater color stability in comparison with bis-acrylic resins (p<0.001). When bis-acrylic resins were compared no significant difference was observed between the resins Structur and Luxatemp (p=0.767). As regards solutions tested, coffee showed the highest color change values (p<0.001), and the longer the storage time interval, the greater was the color change in all the temporary restorative materials analyzed (p<0.001).ConclusionAcrylic resin presented greater color stability in comparison with bis-acrylic resins (p<0.001). Coffee caused the greatest color change, and immersion time was determinant in color stability of the temporary materials analyzed.


2005 ◽  
Vol 5 (3) ◽  
pp. 767-779 ◽  
Author(s):  
T. Petäjä ◽  
V.-M. Kerminen ◽  
K. Hämeri ◽  
P. Vaattovaara ◽  
J. Joutsensaari ◽  
...  

Abstract. Hygroscopicity (i.e. water vapour affinity) of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility) resembled that of particles produced in the local or semi-regional ambient conditions.


2021 ◽  
Vol 410 ◽  
pp. 778-783
Author(s):  
Pavel V. Matyukhin ◽  
Daler I. Mirzoev

The paper presents the results of ferriferous wastes modification process research carried on the basis of JCS “Leninobad rare metals Plant” located in the Republic of Tajikistan. The wastes for the study were taken from the western tailing. The article presents the justification of the chosen wastes as a filling material in the development of new radiation protective composite building materials. The data on the initial ferriferous chemical composition of the tailing wastes and the chemical composition of the material that passed the enrichment process is presented. The study contains microphotos of ferriferous haematite raw material particles surface before and after completing the modifying process. The paper presents and describes the study of X-ray phase analysis diffractograms of enriched iron-containing wastes before and after the modification process. The current research proves that the enrichment ferriferous wastes particles modification process is possible and as a result it can be used as a filling for the development of new kinds of radioprotective composite materials.


2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


Sign in / Sign up

Export Citation Format

Share Document