scholarly journals Effects of Mn, Zn Additions and Cooling Rate on Mechanical and Corrosion Properties of Al-4.6Mg Casting Alloys

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1983
Author(s):  
Chih-Ting Wu ◽  
Sheng-Long Lee ◽  
Ye-Feng Chen ◽  
Hui-Yun Bor ◽  
Kung-Hui Liu

The mechanical properties of the Al-Mg alloy can be enhanced by adding metallic elements, but a continuous distribution of precipitates at grain boundaries leads to intergranular corrosion during sensitization treatment. In the present work, Mn, Zn additions, water cooling and furnace cooling were executed to investigate their effects on the mechanical and corrosion properties of the Al-4.6Mg alloy. Our results show that adding Mn to Al-4.6Mg alloys may produce grain refinement and dispersion strengthening, increasing tensile strength and hardness. The presence of Mn did not affect the corrosion resistance of Al-Mg alloys. Adding Zn to the Al-4.6Mg alloy increased tensile strength and hardness, but decreased corrosion resistance. Combined, the addition of Mn and Zn to the Al-4.6Mg alloy exhibited the highest tensile strength and hardness, but seriously reduced corrosion resistance. Furnace cooling substituted for water quenching could avoid intergranular corrosion, but slightly decreased the tensile strength and hardness by 7.0% and 6.8%, respectively.

2012 ◽  
Vol 185 ◽  
pp. 113-115 ◽  
Author(s):  
R. Mohanraj ◽  
Kumar D. Rajesh ◽  
Kumar M. Yeswanth ◽  
N. Arivazhagan ◽  
Ramkumar K. Devendranath ◽  
...  

This paper investigated the influence of filler materials such as E308L and ENiCu-7 utilized in the GTA welded AISI 304 with respect to mechanical and corrosion properties. It was found that E308L had shown better tensile strength and corrosion resistance as compared to ENiCu-7. A comparative analysis had been made on the different regions of the weldment subjected to cyclic air oxidation at 700°C. The corrosion products were examined using XRD and SEM/EDAX analysis.


2006 ◽  
Vol 12 (4) ◽  
pp. 231-235
Author(s):  
Kemal Delijic ◽  
Vanja Asanovic ◽  
Dragan Radonjic

The paper describes the mechanical and corrosion properties of three heat treatable extruded Al-Mg-Si aluminum alloys. The alloys were tested as T5 tempered (air-quenched directly on the press and artificially aged) after processing by the extrusion of semi-continuous cast and homogenized billets. The addition of small amounts of zirconium and manganese in the base AIMgSiO.7 alloy increased the strength, reaching 310 MPa of tensile strength and increased the corrosion rate by 15% in aqueous sodium chloride solution.


2019 ◽  
Vol 51 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Serkan Islak

In this study, AlCu matrix hybride composites with various ratios of boron carbide (B4C), hexagonal boron nitride (hBN), and graphite (Gr) were produced by using hot-pressing method. The microstructure, density, mechanical and corrosion properties of these composites were investigated. Optical microscopy, scanning electron microscopy, and X-ray diffraction were used to characterize the microstructures, and the experimental densities of the composites were measured using a helium pycnometer. The mechanical properties including the hardness and transverse rupture strength were investigated using hardness and three-point bending tests, respectively. In addition, the hybrid composites were immersed in an aqueous solution of 3.5 wt.-percent NaCl at pH 3 for potentiodynamic and corrosion rate measurements. These tests revealed that a microstructure in which reinforcing particles are almost homogeneously dispersed in the matrix was obtained. Density measurements have shown that very dense and compact hybrid AMCs are produced. The hardness and transverse rupture strength of the composites were significantly increased by particulate addition to the matrix. Depending on the type and amount of reinforcement material, differences in the corrosion resistance of the hybrid composites have been determined. The results show that AlCu-8B4C-2Gr hybrid composite material has the highest corrosion resistance among the composite materials.


2013 ◽  
Vol 829 ◽  
pp. 665-669
Author(s):  
Mojdeh Faghih ◽  
Ebrahim Karamian ◽  
Ahmad Monshi

Today due to the unique properties of magnesia carbon refractories, the iron and steel industries are of special interest. Therefore, it is important to extend the life of the refractory. The effect of calcined alumina and nanocarbon on the mechanical strength and corrosion resistance against slag refractories magnesia carbon has been studied. Mechanical strength of cold crushing strength (CCS) was measured according to ASTM C0133-97R03 numbers. The bulk density (BD) and apparent porosity (AP) were determined respectively, relative to the size and weight measured using Archimedes method according to ASTM C0020-00R05 numbers and corrosion resistance against slag shrub procedure. Samples prepared at cylinder 50×50 mm were tempered on 250 °C for three hours. The corrosion resistance of the samples cocked on 1350 °C for two hours under reducing atmosphere (coke bed) was evaluated. During the review process of characterization methods, XRD, SEM-EDX has been used. The results showed that the properties improved.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1147
Author(s):  
Xiaofeng Wu ◽  
Chunxiang Xu ◽  
Jun Kuan ◽  
Zhengwei Zhang ◽  
Jingshan Zhang ◽  
...  

The previous study conducted on the as-cast Mg-2Y-1Zn-0.6Zr alloy showed that the tensile strength, yield strength and elongation of the as-cast alloy were 245 MPa, 135 MPa and 14.4%, respectively. In order to further explore the potential of the material, the hot extrusion process of variable temperature (250 °C, 300 °C and 350 °C) was carried out on the basis of the as-cast alloy. After hot extrusion, the mechanical properties of the material have been greatly improved compared with as-cast alloy. The tensile strength, yield strength and elongation of the extruded alloy reached 327 MPa, 322 MPa and 24.9%, respectively. The reason for the significant improvement of material properties is mainly due to the dynamic recrystallization during thermal processing, which greatly fines the grains of as-cast alloy. Moreover, the experimental results shown that the corrosion performance of the alloy after hot extrusion at 300 °C is also optimal.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3416
Author(s):  
Eliza Romanczuk ◽  
Krzysztof Perkowski ◽  
Zbigniew Oksiuta

An influence of the powder metallurgy route on the phase structure, mechanical properties, and corrosion resistance of Fe–18%Cr–12%Mn–N nickel-free austenitic stainless steel as a potential material for medical applications were studied. The powder was mechanically alloyed in a high purity nitrogen atmosphere for 90 h followed by Hot Isostatic Pressing at 1150 °C (1423 K) and heat treatment at 1175 °C (1423 K) for 1 h in a vacuum with furnace cooling and water quenching. More than 96% of theoretical density was obtained for the samples after Hot Isostatic Pressing that had a direct influence on the tensile strength of the tested samples (Ultimate Tensile Strength is 935 MPa) with the total elongation of 0.5%. Heat treatment did not affect the tensile strength of the tested material, however, an elongation was improved by up to 3.5%. Corrosion properties of the tested austenitic stainless steel in various stages of the manufacturing process were evaluated applying the anodic polarization measurements and compared with the austenitic 316LV stainless steel. In general, the heat treatment applied after Hot Isostatic Pressing improved the corrosion resistance. The Hot Isostatic Pressing sample shows dissolution, while heat treatment causes a passivity range, the noblest corrosion potential, and lower current density of this sample.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1777 ◽  
Author(s):  
Ran Yang ◽  
Jiuba Wen ◽  
Yanjun Zhou ◽  
Kexing Song ◽  
Zhengcheng Song

The effects of aluminum on the mechanical properties and corrosion behavior in artificial seawater of Cu-Ni-Fe-Mn alloys were investigated. Cu-7Ni-xAl-1Fe-1Mn samples, consisting of 0, 1, 3, 5, and 7 wt % aluminum along with the same contents of other alloying elements (Ni, Fe, and Mn), were prepared. The microstructure of Cu-7Ni-xAl-1Fe-1Mn alloy was analyzed by Transmission Electron Microscopy (TEM), and its corrosion property was tested by an electrochemical system. The results show that the mechanical and corrosion properties of Cu-7Ni-xAl-1Fe-1Mn alloy have an obvious change with the aluminum content. The tensile strength has a peak value of 395 MPa by adding 3 wt % aluminum in the alloy. Moreover, the corrosion rate in artificial seawater of Cu-7Ni-3Al-1Fe-1Mn alloy is 0.0215 mm/a which exhibits a better corrosion resistance than the commercially used UNS C70600. It is confirmed that the second-phase transformation of Cu-7Ni-xAl-1Fe-1Mn alloy follows the sequence of α solid solution → Ni3Al → Ni3Al + NiAl → Ni3Al + NiAl3. The electrochemical impedance spectroscopy (EIS) shows that the adding element aluminum in the Cupronickel can improve the corrosion resistance of Cu-7Ni-xAl-1Fe-1Mn alloy.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-yuan Zhu ◽  
Yi Sui ◽  
An-lun Dai ◽  
Yuan-fei Cai ◽  
Ling-Li Xu ◽  
...  

The microstructures evolution of precipitations for an ultra-low iron Alloy 625 subjected to long term aging treatment at 750°C was investigated using scanning electron microscope (SEM) and X-ray diffraction (XRD). The intergranular corrosion behaviors of Alloy 625 were evaluated by using ASTM G28A. The result shows that the precipitated phase γ′′-Ni3Nb was mainly precipitated at the grain boundaries and twin boundaries. The number and volume fraction of γ′′ increased with the prolonging of aging time. The transformation of γ′′ to δ-Ni3Nb occurred after aging periods of 200 h. The corrosion resistance of Alloy 625 was significantly reduced during aging treatment. The decrease in intergranular corrosion resistance of Alloy 625 was attributed to the dissolution of precipitated phase and chromium depleted zone. The mass loss rate of Alloy 625 after aging treatment is related to the volume of precipitated phase and can be simulated by Johnson-Mehl-Avrami equation.


2013 ◽  
Vol 749 ◽  
pp. 173-179 ◽  
Author(s):  
Dan Hu ◽  
Shu Lin Li ◽  
Sheng Lu

In this paper, the effects of different TIG welding parameters on corrosion resistance of 321austenitic stainless steel welding joint were studied. Intergranular corrosion, stress-strain curves of SSRT and the fracture surface of the welding joint were investigated by means of intergranular corrosion test, SCC test and SEM. The results showed that the intergranular corrosion cracks did not occur for all joints welded in the range of TIG welding current of 130A~190A. In pure water at room temperature, strain rate at the range of 1×10-5 s-1~1×10-6 s-1 had little effect on the maximum tensile strength of the material under the same welding conditions and the time of joint fracture increased as the strain rate decreased. At strain rate of 1×10-6 s-1, the maximum tensile strength of the joint welded in the current of 130A and 150A decreased significantly in the dyeing assistant and presented stress corrosion sensitivity. Joints welded in the current of 170A and 190A, showed excellent resistance to stress corrosion. Through the analysis of the fracture surface of joints, the joint welded in current of 130A presented a tendency to brittle fracture, while the joints in the current of 170 A and190 A were characterized with ductile fracture.


2021 ◽  
Vol 98 (2) ◽  
pp. 23-37
Author(s):  
A.V. Sinchuk ◽  

Scientific domestic and foreign literature touching the field of Al – Mg – Si wrought aluminum alloys are reviewed, the history of appearance of the most common brands is described. It is shown that the development of alloys was proceed gradually advancing their chemical composition along the quasi-binary Mg/Si = 1.73 сross -section in the direction of increasing concentration of just Mg and Si, and the strength of last modern brands was provided by additional alloying, primarily copper, the content of which can reach 1-1.4%. The influence of alloying elements on microstructure, mechanical and corrosion properties of alloys is described, features of their heat treatment, factors of maximum strengthening and susceptibility to intergranular corrosion are revealed. Attention is focused on the key role of the Mg/Si ratio, transition metals, Cu, Cr and Mn first of all, in the formation of balanced properties, since the positive effect of these elements on increasing the strength and the recrystallization temperature is often offset by the negative impact on intergranular corrosion and quench sensitivity. It is shown that in low-alloyed Al–Mg–Si alloys the strength premises Mg/Si≈1 and the premises for high-end corrosion resistance Mg/Si≈2 are occurred simultaneously. Alongside an increase of the absolute content of Mg and Si in alloys, alongside an increase of alloying degree with other strengthening elements, it is impossible to simultaneously fulfill both of these premises; therefore, one has to look for a reasonable compromise between strengthening, decreasing the technological plasticity and corrosion resistance of alloys. One of the effective ways to reach such a compromise is multi-stage regimes of artificial aging. The prospects of microalloying with Sc and Ca able to form with aluminum nanoscale intermetallic phases of hardening are outlined. Keywords: avials, semi - finished products, alloying system, transition metals, aging, mechanical properties, intergranular corrosion.


Sign in / Sign up

Export Citation Format

Share Document