scholarly journals Microstructure Characterisation and Identification of the Mechanical and Functional Properties of a New PMMA-ZnO Composite

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2717
Author(s):  
Rebeka Rudolf ◽  
Danica Popović ◽  
Sergej Tomić ◽  
Rajko Bobovnik ◽  
Vojkan Lazić ◽  
...  

In this research work, we synthesised poly(methyl methacrylate) (PMMA) enriched with 2 wt.% zinc oxide nanoparticles (ZnO) through conventional heat polymerisation and characterised its microstructure. It was found that the distribution of ZnO nanoparticles was homogeneous through the volume of the PMMA. The mechanical testing of the PMMA-ZnO composite primarily included the determination of the compressive properties on real dentures, while density measurements were performed using a pycnometer. The testing of functional properties involved the identification of the colour of the new PMMA-ZnO composite, where pure PMMA acted as a control. In the second step, the PMMA-ZnO cytotoxicity assays were measured in vitro, which were shown to be similar to the control PMMA. Based on this, it could be concluded that the newly formed PMMA-ZnO composite did not induce direct or indirect cytotoxic effects in L929 cell cultures; therefore, according to ISO/DIN 10993-5:2009, this composite was categorised as non-cytotoxic.

Author(s):  
Noor Fahitah Abu Hanipah ◽  
Noor Farah Omar Ahmad ◽  
Minaketan Tripathy ◽  
Elena Gureeva ◽  
Michail Novikov ◽  
...  

N-substituted 5-(phenylamino)uracil derivatives have recently shown to possess potential antiviral properties. However, the high lipophilicity of these compounds has limited their ability to be dissolved in aqueous media for further in vitro and in vivo studies. This study aimed to determine the potential solvents for novel N-substituted 5-(phenylamino)uracil compounds and to evaluate the cytotoxic effects of these solvents on Vero 76 cells. Eight solvents, namely acetone, methanol, ethanol, dimethyl sulfoxide (DMSO), polyvinylpyrrolidone, nicotinamide, L-arginine, and sodium benzoate, were used to dissolve 1600 µM each of compound Z214 and compound Z276, which were chosen as the representatives of novel N-substituted 5-(phenylamino)uracil derivatives. Only L-arginine (700 mM), sodium benzoate (1500 mM), and DMSO (128 mM) were able to solubilise both compounds. Cytotoxicity assays on Vero 76 cells have shown that the maximum concentrations of L-arginine, sodium benzoate, and DMSO that demonstrated 100% cell viability were 108 mM, 10 mM, and 211 mM respectively. L-arginine at concentrations ranged from 215 mM to 860 mM have shown to significantly increased cell proliferation; while both sodium benzoate and DMSO have significantly reduced cell viability at concentrations ≥ 10 mM and ≥ 211 mM respectively. CC50 values were 23.22 mM and 214.92 mM for sodium benzoate and DMSO respectively. The findings in this study revealed that DMSO at a concentration of 211 mM was found to be the most appropriate solvent to solubilise 1600 µM and below of novel N-Substituted 5-(phenylamino)uracil derivatives.


2013 ◽  
Vol 68 (5-6) ◽  
pp. 191-197 ◽  
Author(s):  
Birkan Açıkgöz ◽  
İskender Karaltı ◽  
Melike Ersöz ◽  
Zeynep M. Coşkun ◽  
Gülşah Çobanoğlu ◽  
...  

The present study explores the antimicrobial activity and cytotoxic effects in culture assays of two fruticose soil lichens, Cladonia rangiformis Hoffm. and Cladonia convoluta (Lamkey) Cout., to contribute to possible pharmacological uses of lichens. In vitro antimicrobial activities of methanol and chloroform extracts against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus), and the yeast Candida albicans were examined using the paper disc method and through determination of minimal inhibitory concentrations (MICs). The data showed the presence of antibiotic substances in the chloroform and the methanol extracts of the lichen species. The chloroform extracts exhibited more signifi cant antimicrobial activity than the methanol extracts. However, a higher antifungal activity was noted in the methanol extract of C. rangiformis. The maximum antimicrobial activity was recorded for the chloroform extract of C. convoluta against E. coli. The cytotoxic effects of the lichen extracts on human breast cancer MCF-7 cells were evaluated by the trypan blue assay yielding IC50 values of ca. 173 and 167 μg/ml for the extracts from C. rangiformis and C. convoluta, respectively.


2020 ◽  
Vol 1 (1) ◽  
pp. 9-14
Author(s):  
Tina Oana Cristea ◽  
Alin Gabriel Iosob ◽  
Creola Brezeanu ◽  
Petre Marian Brezeanu ◽  
Dan Avasiloaiei ◽  
...  

The aim of the present research work was the screening of the effect of the main cytokinin (BAP, kinetin or zeatin) in different concentrations and combinations with the auxin NAA on androgenesis of white cabbage anthers cultivated in vitro. The results obtained are regarded as an intermediary stage for the development of a reproducible protocol for in vitro regeneration of plant from anther culture. Thus, for the determination of the influence of plant growth regulators formula over the callus induction and plant regeneration from anthers cultivated in vitro in the present study the authors undergo a screening of the three most frequently utilized cytokinins (BAP, kinetin and zeatin) in different concentration and combination with the auxin NAA. The results obtained, indicated that the best morphogenetic reaction is obtained on variant with BAP as the main growth regulator.


2016 ◽  
Vol 3 ◽  
pp. 184954351667344
Author(s):  
Chukwuebuka Umeyor ◽  
Emmanuel Anaka ◽  
Franklin Kenechukwu ◽  
Chinazom Agbo ◽  
Anthony Attama

Newbouldia laevis (P. Beauv.) is a tropical rainforest plant used in traditional folk medicine for the treatment of malaria, cough, joint pains, stomach ache, oedema and inflammation. The main thrust of this research work was to study the analgesic/anti-nociceptive properties of N. laevis-loaded solid lipid microdispersions. N. laevis leaves were extracted using ethanol, and the extract was formulated into solid lipid microdispersions using lipid matrix comprising a rational blend of Precirol® ATO 5 and Softisan® 154. Characterization of the solid lipid microdispersions include determination of morphology, particle size, pH, thermal property, encapsulation efficiency percentage and analgesic/anti-nociceptive property. The results obtained showed that the particles were spherical with sizes ranging from 40 µm to 125 µm. The solid lipid microdispersions maintained a stable pH within the acidic region of 5–6 with insignificant variations ( p > 0.05) over a period of 90 days. Thermal analysis showed that N. laevis was entrapped in the lipid matrix used for the formulations. Solid lipid microdispersions recorded a maximum encapsulation efficiency up to 88.1%. N. laevis-loaded solid lipid microdispersions also produced good analgesic/anti-nociceptive property comparable with the standard diclofenac potassium. N. laevis-loaded solid lipid microdispersions showed good analgesic/anti-nociceptive effect and could be used in the treatment and management of pain.


Chemosphere ◽  
2017 ◽  
Vol 173 ◽  
pp. 452-459 ◽  
Author(s):  
Teuta Eljezi ◽  
Pierre Pinta ◽  
Damien Richard ◽  
Jérémy Pinguet ◽  
Jean-Michel Chezal ◽  
...  

2020 ◽  
Author(s):  
Christine Moore ◽  
Victoria Palau ◽  
Rashid Mahboob ◽  
Janet Lightner ◽  
William Stone ◽  
...  

Abstract Background: α-tocopherol (AT) and γ-tocotrienol (GT3) are vitamin E isoforms considered to have potential chemopreventive properties. AT has been widely studied in vitro and in clinical trials with mixed results. The latest clinical study (SELECT trial) tested AT in prostate cancer patients, determined that AT provided no benefit, and could promote cancer. Conversely, GT3 has shown antineoplastic properties in several in vitro studies, with no clinical studies published to date. GT3 causes apoptosis via upregulation of the JNK pathway; however, inhibition results in a partial block of cell death. We compared side by side the mechanistic differences in these cells in response to AT and GT3.Methods: The effects of GT3 and AT were studied on androgen sensitive LNCaP and androgen independent PC-3 prostate cancer cells. Their cytotoxic effects were analyzed via MTT and confirmed by metabolic assays measuring ATP. Cellular pathways were studied by immunoblot. Quantitative analysis and the determination of relationships between cell signaling events were analyzed for both agents tested. Non-cancerous prostate RWPE-1 cells were also included as a control. Results: The RAF/RAS/ERK pathway was significantly activated by GT3 in LNCaP and PC-3 cells but not by AT. This activation is essential for the apoptotic affect by GT3 as demonstrated the complete inhibition of apoptosis by MEK1 inhibitor U0126. Phospho-c-JUN was upregulated by GT3 but not AT. No changes were observed on AKT for either agent, and no release of cytochrome c into the cytoplasm was detected. Caspases 9 and 3 were efficiently activated by GT3 on both cell lines irrespective of androgen sensitivity, but not in cells dosed with AT. Cell viability of non-cancerous RWPE-1 cells was affected neither by GT3 nor AT. Conclusions: c-JUN is a recognized master regulator of apoptosis as shown previously in prostate cancer. However, the mechanism of action of GT3 in these cells also include a significant activation of ERK which is essential for the apoptotic effect of GT3. The activation of both, ERK and c-JUN, is required for apoptosis and may suggest a relevant step in ensuring circumvention of mechanisms of resistance related to the constitutive activation of MEK1.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Juan Pablo Loyola-Rodríguez ◽  
Ildelfonso Lastra-Corso ◽  
José Obed García-Cortés ◽  
Alejandra Loyola-Leyva ◽  
Rúben Abraham Domínguez-Pérez ◽  
...  

Orthodontic brackets release ions that can be reabsorbed in the oral mucosa, potentially causing complications, including cytotoxic effects and mutagenic alterations. The aim was to evaluate the genotoxicity induced by orthodontic appliance alloys in cultures of human gingival fibroblasts by comet assay. Eluates were obtained from the following brackets alloys: EconoLine (SS: stainless steel), MiniMirage (Ni-Ti: nickel-titanium), Nu-Edge (Co-Cr: cobalt-chromium), In-Vu (PC-polycrystals (PC) aluminum oxide), and Monocrystal IZE (monocrystalline (MC) aluminum oxide). Each bracket was sterilized and exposed to a corrosive process for 35 days. The obtained eluates were tested for genotoxicity of human gingival fibroblasts (HGFA) by the alkaline comet assay. All study groups showed genotoxic effects; there was a significant difference (p<0.0001) among groups. The eluates obtained from Ni-Ti showed a 16-times greater genotoxic effect. There were differences in genotoxicity after comparing the Ni-Ti with SS (p<0.01) and Co-Cr brackets (p<0.001). The ceramic was more genotoxic than metallic brackets (SS and Co-Cr), but less than the Ni-Ti. This in vitro model will be useful for further study of early DNA damage caused by brackets and other biomaterials used in the oral cavity before their introduction into the clinical setting.


Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 243 ◽  
Author(s):  
Mohamed S. Hifnawy ◽  
Hossam M. Hassan ◽  
Rabab Mohammed ◽  
Mohamed M. Fouda ◽  
Ahmed M. Sayed ◽  
...  

Liquid chromatography coupled with high resolution mass spectrometry (LC-HRESMS)-assisted metabolomic profiling of two sponge-associated actinomycetes, Micromonospora sp. UR56 and Actinokineospora sp. EG49, revealed that the co-culture of these two actinomycetes induced the accumulation of metabolites that were not traced in their axenic cultures. Dereplication suggested that phenazine-derived compounds were the main induced metabolites. Hence, following large-scale co-fermentation, the major induced metabolites were isolated and structurally characterized as the already known dimethyl phenazine-1,6-dicarboxylate (1), phenazine-1,6-dicarboxylic acid mono methyl ester (phencomycin; 2), phenazine-1-carboxylic acid (tubermycin; 3), N-(2-hydroxyphenyl)-acetamide (9), and p-anisamide (10). Subsequently, the antibacterial, antibiofilm, and cytotoxic properties of these metabolites (1–3, 9, and 10) were determined in vitro. All the tested compounds except 9 showed high to moderate antibacterial and antibiofilm activities, whereas their cytotoxic effects were modest. Testing against Staphylococcus DNA gyrase-B and pyruvate kinase as possible molecular targets together with binding mode studies showed that compounds 1–3 could exert their bacterial inhibitory activities through the inhibition of both enzymes. Moreover, their structural differences, particularly the substitution at C-1 and C-6, played a crucial role in the determination of their inhibitory spectra and potency. In conclusion, the present study highlighted that microbial co-cultivation is an efficient tool for the discovery of new antimicrobial candidates and indicated phenazines as potential lead compounds for further development as antibiotic scaffold.


1994 ◽  
Vol 77 (2) ◽  
pp. 512-516 ◽  
Author(s):  
Mary A Dombrink-Kurtzman ◽  
Glenn A Bennett ◽  
John L Richard

Abstract In vitro cytotoxicity assays have been performed for detection and quantitation of fumonisins, as possible alternatives for whole animal testing. This study was undertaken to establish optimal in vitro conditions using turkey lymphocytes. Turkey lymphocytes were isolated from peripheral blood by Percoll gradient centrifugation. Cytotoxicity of fu-monisin B1 (FB1) and B2 (FB2) was determined by exposing lymphocytes to FB1 or FB2 at concentrations of 0.01–25 μg/mL for 24,48, or 72 h at 39°C. The MTT bioassay was used to measure cell viability and proliferation. In metabolically active cells, the tetrazolium salt, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], was reduced to MTT formazan. Turkey lymphocytes that had been exposed in vitro to FB1 and FB2 for 48 and 72 h showed inhibition of cell proliferation that was dose-dependent. The 50% inhibitory dose for FB1 and FB2 was 0.4–5 μg/mL. Cells exposed to FB1 or FB2 exhibited high levels of cytoplasmic vacuolization and were unable to proliferate, whereas proliferation of control lymphocytes was observed at 48 and 72 h. FB2 was 3- to 4-fold more cytotoxic than FB1.


2014 ◽  
Vol 33 (10) ◽  
pp. 1000-1007 ◽  
Author(s):  
B Çörekçi ◽  
C Irgın ◽  
K Halıcıoğlu ◽  
S Dursun ◽  
MZ Yavuz

Objectives: The aim of this study was to evaluate, the cytotoxicity of orthodontic composites in vitro as a function of degree of conversion (DC) and the light curing units (LCU) employed on mouse fibroblast (L929). Materials and Methods: Cured samples of the composites Light bond ( Reliance Orthodontic Products, Itasca, Illinois, USA), Ortho bracket paste (Bisco, Schaumburg, Illinois, USA), Opal bond MV (OPAL, South Jordan, Utah, USA), and Transbond XT (3M, Monrovia, California, USA) were prepared. Polymerization was performed with two LCUs: VALO Ortho (Ultradent, South Jordan, Utah, USA) is a third-generation LCU and Elipar S10 (3M, USA) is a second-generation LCU. Four samples were immersed in cell culture medium to obtain composite extracts. After incubation of L929 cell cultures with the extracts obtained, cytotoxicity was determined using the methyl tetrazolium test. Fourier transform infrared spectroscopy (FTIR) was used to evaluate DC for five samples. A multivariate analysis of variance (ANOVA), two-way ANOVA, and Tukey’s honestly significant difference test were utilized for statistical analyses. Results: Cytotoxicity and DC of all tested composites ( p < 0.001) and the interaction between composites and LCUs ( p < 0.01) were significantly different. LCUs had no significant influence on the cytotoxicity and DC of composite materials ( p > 0.05). The correlations between cell viability and DC were positive for three composites but statistically insignificant. Conclusion: Composites and LCUs must be matched with one another to result in satisfactory maximal biocompatibility and DC. Opal Bond plasma light-emitting diode combination was a better choice for cell viability. Three composites showed a positive correlation between cytotoxicity and DC. Therefore high-intensity LCUs can be said to efficiently affect polymerization, and so, higher DC rates may achieve higher cell viability rates.


Sign in / Sign up

Export Citation Format

Share Document