scholarly journals Long-Term Sorption and Solubility of Zirconia-Impregnated PMMA Nanocomposite in Water and Artificial Saliva

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3732
Author(s):  
Saleh Zidan ◽  
Nikolaos Silikas ◽  
Julfikar Haider ◽  
Julian Yates

Exposure of denture base acrylic resins to the oral environment and storage media for extended periods of time results in sorption of saliva or water, leading to a reduction in physical properties and thus clinical service life. The purpose of this in vitro study was to assess the sorption and solubility of high-impact heat-polymerised denture base acrylic resin (HI PMMA) impregnated with zirconia nanoparticles after being stored for 180 days in distilled water (DW) and artificial saliva (AS). The specimens were divided into six groups for each storage medium, according to the concentration of zirconia nanoparticles (0, 1.5, 3.0, 5.0, 7.0, and 10.0 wt.%). Data were statistically analysed for sorption and solubility using one-way and two-way ANOVA statistical tests. Sorption in DW and AS for all groups containing zirconia showed sorption values lower than the control group at 90 days, though not significantly different (p > 0.05) compared to the control group. For both the DW and AS groups, the lowest solubility value was measured in the group containing 3 wt.% zirconia, however, there was no significant difference compared to the control group except when observing 10 wt.% zirconia in AS, which showed a significantly higher solubility (p < 0.05). High-impact PMMA, impregnated with low concentrations of ZrO2, showed the lowest sorption and solubility in both media, but was not significantly different compared to pure HI PMMA.

2020 ◽  
Vol 5 (1) ◽  
pp. 36-43
Author(s):  
Gladis Aprilla Rizki ◽  
Sri Wahyuningsih Rais ◽  
Martha Mozartha

Alcoholic beverages can be consumed in any group age, and it may be consumed by an individual using denture. Fluid absorption by heat-cured acrylic resin as a material of a denture base was able to cause an increase in its surface roughness. Absorption of an organic solvent such as the ethanol in an alcoholic beverage(s) could even increase the effect. This study aimed to evaluate the effect of alcohol beverages on surface roughness of heat-cured acrylic resin denture base. Samples (n=24) were prepared from heat-cured acrylic resin (25x25x5 mm). They were divided into 4 groups and the pre-test surface roughness was measured. Samples of each group were immersed for 10 minutes into the solution (distilled water as the control group, beer, wine, and whiskey as the test groups). After stored in artificial saliva for 23 hours, the samples were immersed into the solution, completing a period of 24 hours. This procedure was performed for 7 consecutive days and the post-test surface roughness was measured. Data were statistically analyzed using the Kruskal-Walis test. There was a significant difference in surface roughness measurement before and after the immersion (p<0.05). Whiskey was most affecting the surface roughness of heat-cured acrylic resin denture base. Alcoholic beverages could increase the surface roughness of heat cure acrylic resin denture base. Keywords: Alcoholic beverages; Heat-cured acrylic denture base; Surface roughness


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1757
Author(s):  
Saleh Zidan ◽  
Nikolaos Silikas ◽  
Julfikar Haider ◽  
Julian Yates

Exposure of denture base acrylic resins to the oral environment and storage media for extended periods of time results in colour change due to changes in the properties of the material. The purpose of this in vitro study was to assess the colour stability of high-impact heat-polymerized denture base acrylic resin (HI PMMA) impregnated with zirconia nanoparticles after storage in distilled water (DW) and denture cleaners such as Steradent (STD) and Milton (MIL) for 180 days. Ninety specimens of PMMA + Zirconia nanocomposite with varying nanoparticle concentrations (1.5 wt.%, 3.0 wt.%, 5.0 wt.%, 7.0 wt.% and 10 wt.%) were prepared with a diameter and thickness of 25 ± 1.0 mm × 2 ± 0.1 mm and divided into six groups, while each group was further divided into three subgroups: storage in DW (control), STD and MIL. Colour changes were measured with a Minolta Chroma Meter (Minolta, Osaka, Japan), and assessed using the CIE L*a*b* colorimetric system. Data were statistically analysed for colour change with Friedman’s Two-way and Kruskal-Wallis tests at a pre-set alpha value level of 0.05. The colour change (ΔΕ) exhibiting significant differences were found among all groups immersed in denture cleaners, and all values increased with time. According to the National Bureau of Standards, the control group displayed the lowest colour change value (ΔΕ = 1.22), and the highest value was for 10 wt.% ZrO2 while stored in MIL (ΔΕ = 6.07). The values of colour change for storage in water ranged from 0.49 (control) to 1.82 (10 wt.% ZrO2). The colour change value for the composite group containing 3 wt.% zirconia was clinically acceptable. However, high concentrations of denture cleaners should be avoided, and the shortest cleaning time is recommended to improve the clinical life of the nanocomposite denture base.


Author(s):  
Amal Nawasrah ◽  
Mohammed Gad ◽  
Mai El Zayat

Statement of problem: Henna has been added to polymethylmethacrylate (PMMA) as a new type of antifungal agent; however, its effect on the latter&rsquo;s physical properties has not been investigated. Purpose: This study aimed to evaluate the effect of the addition of various henna concentrations on the surface roughness and hardness of PMMA denture base material. Materials and Methods: A total of 99 specimens of rectangular-shaped (10&times;20&times;3 mm3) acrylic specimens were prepared from heat-cured acrylic resin. Specimens were divided into one control group without the addition of henna and five test groups, which were prepared by adding Yamani henna powder to acrylic powder at concentrations of 1wt%, 2.5wt%, 5wt%, 7.5wt%, and 10wt%. The polymer was added to the monomer before being mixed, packed, and processed using the conventional water bath method. After processing, specimens were finished and polished, then kept in distilled water for 48+2 h. A profilometer and Vickers hardness tester were used to measure surface roughness and hardness respectively. Statistical data analysis was conducted via SPSS version 20.0 (IBM, USA). Results: The addition of henna at varying concentrations significantly increased surface roughness values (P &le; 0.01) while decreasing hardness (P &le; 0.0001). The most favorable addition value was 1% henna between all henna groups. Conclusion: The addition of henna to the acrylic resin may negatively affect the surface properties of PMMA acrylic denture base.


2008 ◽  
Vol 02 (02) ◽  
pp. 086-090 ◽  
Author(s):  
Hale Ară ◽  
Nazmiye Dönmez ◽  
Sema Belli

ABSTRACTObjectives: The purpose of this in vitro study was to evaluate the effect of artificial saliva contamination on microtensile bond strength to pulp chamber dentin.Methods: Clearfil SE Bond (SEB) (Kuraray, JAPAN) adhesive system and Clearfil Photo Posterior (CPP) (Kuraray, JAPAN) composite resin were used. Twenty extracted caries-free human molar teeth were randomly distributed into four groups. Apart from a control group without contamination (Group 1), primed dentin surfaces were contaminated with artificial saliva (10 s), rinsed, dried, reprimed and bonded (Group 2), coated with adhesive, contaminated with artificial saliva, rinsed, dried, bonding procedures were repeated (Group 3), coated with adhesive, light cured, contaminated with saliva, rinsed, dried, treated with SE primer (SEP) and SEB (Group 4).After 24 hrs, the teeth were prepared for microtensile bond testing and tensile bond strength was measured (1mm/min). The data was calculated as MPa and analyzed using one-way ANOVA and Duncan test (P<.05).Results: The results indicated that Group 2 showed lowest bond strength when compared to the others (P<.05). No statistically significant difference was found between Groups 3 and 4 (P>.05).Conclusions: It was concluded that contamination during priming procedure has a negative effect on bond strength (P<.05). Although contamination of the uncured adhesive was not critical in this study (P>.05) any kind of contamination of the bonding area should, in principle, be avoided. (Eur J Dent 2008;2:86-90)


Author(s):  
Rathika Rai ◽  
M. A. Easwaran ◽  
K. T. Dhivya

Aim: To evaluate the surface detail reproduction of dental stone this is immersed in different disinfectant solution and studied under stereomicroscope. Methodology: Total number of 30 specimens of dental stone (Type III) were made with measurements of 1.5cm diameter and 1cm height .This samples are divided in to 3 groups group A,B,C. were A is immersed in Distilled water which was taken as control group ;B is immersed in 2% Glutaraldehyde and C is immersed in 5%sodium hypochlorite. Each specimen were immersed in the disinfectant solution for 15 minutes and dried under room temperature for 24 hrs. After 24 hrs each specimens are studied under stereomicroscope for surface details. Result: The results showed no significant difference in the surface irregularities and porosities for a group 1 and group 2 except group 3 which showed significant increase in the porosities, surface irregularities and erosions after disinfection with 5% NaHOCl by immersion method. Conclusion: The surface detail reproduction capacity of die stone was adversely affected when 5% Sodium hypochlorite was used as disinfectant solution when compare d to control group and 2% Glutaraldehyde


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Philipp Körner ◽  
Luca Georgis ◽  
Daniel B. Wiedemeier ◽  
Thomas Attin ◽  
Florian J. Wegehaupt

Abstract Background This in-vitro-study aimed to evaluate the potential of different fluoride gels to prevent gastroesophageal reflux induced erosive tooth wear. Methods Surface baseline profiles of a total of 50 bovine enamel specimens [randomly assigned to five groups (G1–5)] were recorded. All specimens were positioned in a custom made artificial oral cavity and perfused with artificial saliva (0.5 ml/min). Reflux was simulated 11 times a day during 12 h by adding HCl (pH 3.0) for 30 s (flow rate 2 ml/min). During the remaining 12 h (overnight), specimens were stored in artificial saliva and brushed twice a day (morning and evening) with a toothbrush and toothpaste slurry (15 brushing strokes). While specimens in the control group (G1) did not receive any further treatment, specimens in G2–5 were coated with different fluoride gels [Elmex Gelée (G2); Paro Amin Fluor Gelée (G3); Paro Fluor Gelée Natriumfluorid (G4); Sensodyne ProSchmelz Fluorid Gelée (G5)] in the evening for 30 s. After 20 days, surface profiles were recorded again and enamel loss was determined by comparing them with the baseline profiles. The results were statistically analysed using one-way analysis of variance (ANOVA) followed by Tukey`s HSD post-hoc test. Results The overall highest mean wear of enamel (9.88 ± 1.73 µm) was observed in the control group (G1), where no fluoride gel was applied. It was significantly higher (p < 0.001) compared to all other groups. G2 (5.03 ± 1.43 µm), G3 (5.47 ± 0.63 µm, p = 0.918) and G4 (5.14 ± 0.82 µm, p > 0.999) showed the overall best protection from hydrochloric acid induced erosion. Enamel wear in G5 (6.64 ± 0.86 µm) was significantly higher compared to G2 (p = 0.028) and G4 (p = 0.047). Conclusions After 20 days of daily application, all investigated fluoride gels are able to significantly reduce gastroesophageal reflux induced loss of enamel.


2015 ◽  
Vol 85 (6) ◽  
pp. 920-926 ◽  
Author(s):  
Ricardo Carvalho Bueno ◽  
Roberta Tarkany Basting

ABSTRACT Objective:  To evaluate the proliferation and morphology of human osteoblasts cultured on two brands of mini-implants after 24, 48, and 72 hours, in addition to the chemical composition found on their surface. Materials and Methods:  Two brands of mini-implant (Morelli and Neodent) were evaluated; polystyrene was used as a control group (n  =  3). Osteoblasts were cultured on the surface of sterilized mini-implants in a CO2 incubator at different time periods (24, 48, and 72 hours). Osteoblast proliferation was quantified by scanning electron microscopy using up to 5000× magnification, and cell morphology was analyzed by a single observer. For the chemical analysis, spectroscopy X-ray fluorescence was used to identify and quantify chemical components on the surface of the mini-implants. Results:  Two-way ANOVA showed no significant interaction between the factors studied (P  =  0.686). A Tukey test revealed no significant difference in osteoblast proliferation between the mini-implants at all studied periods; however, a difference in cell proliferation was detected between the Neodent and the control group (P  =  .025). For all groups, time had a direct and positive effect on osteoblast proliferation (P &lt; .001). The significant elements present in both brands of mini-implants were titanium, aluminum, vanadium, and iron. Conclusions:  Osteoblast proliferation was present on the mini-implants studied, which increased over time; however, no significant difference between brands was observed. No difference was seen between the mini-implants evaluated in terms of chemical composition. Cell adhesion after 72 hours suggests that areas of bone remodeling can be achieved, thus initiating the process of mini-implant anchorage.


2021 ◽  
Vol 17 (1) ◽  
pp. 22-26
Author(s):  
Kadek Ayu Wirayuni ◽  
◽  
I Made Hendri Dwi Saputra ◽  

Introduction: The denture base is the part of the removable denture that is supported by good adaptation to the underlying oral tissue. Most of the denture bases are made of acrylic or polymethyl methacrylate resin, better known as PMMA. However, the acrylic resin also has disadvantages such as easily broken and absorbs liquids both water and chemicals. The chemical absorption like alcohol, ethanol, and some drinks that contain acidic materials will chemically be induced with acrylic resin and settle in the pores of the acrylic resin. The chemical damage or defect creates roughness on the surface of the acrylic resin which can cause cracking or crazing and a decrease in surface strength and hardness. Materials and Methods: The method used in this research was a laboratory experimental design with a post-test-only control group using 12 samples consisting of 2 different types of samples by measuring the surface roughness of the acrylic resin after immersing the sample with a predetermined time. Results and Discussions: One-way ANOVA test results showed a significant difference in surface roughness after the samples immersion with a value of p = 0.006 (p <0.05). Conclusions: Based on this research, can be concluded that there is an increase in the surface roughness of the heated polymerized acrylic resin for 3 hours and 4 hours of immersion. The longer the heated polymerized acrylic resin is soaked in arak hence the level of surface roughness increases.


2019 ◽  
Vol 13 (4) ◽  
pp. 305-310
Author(s):  
Mina Biria ◽  
Sajedeh Namaei Ghasemi ◽  
Seyedeh Mahsa Sheikh-Al-Eslamian ◽  
Narges Panahandeh

Background. This in vitro study aimed to evaluate the microshear bond strength (μSBS), microhardness and morphological characteristics of primary enamel after treating with sodium fluoride (NaF) and acidulated phosphate fluoride (APF). Methods. Forty-eight primary canines were cut into mesial and distal sections and assigned to five groups randomly: group 1 (immersed in saliva as a control), group 2 (treated with NAF and immersed in saliva for 30 minutes), group 3 (treated with APF and immersed in saliva for 30 minutes), group 4 (treated with NAF and immersed in saliva for 10 days), and group 5 (treated with APF and immersed in saliva for 10 days). Composite resin (Filtek Z250) was bonded on the specimens (n=15) for measuring the μSBS. After storage in 37°C artificial saliva for 24 hours, µSBS and Vickers hardness tests (10 readings) were performed. The data were analyzed using one-way ANOVA and Kolmogorov-Smirnov, Levene’s and Tukey HSD tests (P<0.05). Morphological analysis of enamel and modes of failure were carried out under a scanning electron microscope (SEM) on two remaining specimens. Results. Significant differences in μSBS were only noted between groups 2 and 4 (P=0.024). Group 3 showed a significant decrease in hardness after storage in artificial saliva (P<0.001), with a significantly lower hardness than the other groups (P<0.001). The SEM observations showed irregular particles in groups 3 and 5; uniform, smooth and thin coats were seen in groups 2 and 4. Conclusion. Fluoride therapy with NaF and APF gels prior to restorative treatments had no adverse effects on the microshear bond strength.


Sign in / Sign up

Export Citation Format

Share Document