scholarly journals Nonlinear Analysis of Compressed Concrete Elements Reinforced with FRP Bars

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4410
Author(s):  
Małgorzata Wydra ◽  
Maria Włodarczyk ◽  
Jadwiga Fangrat

Although fiber reinforced polymer (FRP) bars have proved their usefulness in the case of reinforced concrete flexural elements, there are still limited data on their performance in such structures under compression. Despite multiple benefits of using FRP bars as the reinforcement in concrete elements, their potential application as main reinforcement in compressed elements is still very controversial, mainly due to the limited amount of published research results. The presented work partly fulfills this knowledge gap. Two series of theoretical analyses—one based on the stress distribution in the cross-section and the second using the finite elements method (FEM)—with reference to the experimental results are presented. The analyses concern basalt FRP, glass FRP, and steel-reinforced concrete elements under axial compression. There are derived calculations of load–displacement relations and stress values in bars. Damage progression was analyzed as well. Main findings are as follows: (1) a good agreement between calculated failure loads and experimental results has been achieved; (2) potential negative influence of FRP reinforcement on the compressive capacity of the reinforced element should not be neglected; (3) nonlinear FEM analysis is useful in predicting the maximum value of load and damage zones; (4) stress values of only about 100 MPa (much lower than their compressive strength value) were obtained in non-metallic bars. The results might be useful for the further establishment of design rules.

2016 ◽  
Vol 62 (1) ◽  
pp. 65-82 ◽  
Author(s):  
J. Orlowsky

Abstract A large number of infrastructural concrete buildings are protected against aggressive environments by coating systems. The functionality of these coating systems is mainly affected by the composition and thickness of the individual polymeric layers. For the first time ever, a mobile nuclear magnetic resonance (NMR) sensor allows a non-destructive determination of these important parameters on the building site. However, before this technique can be used on steel-reinforced concrete elements, the potential effect of the reinforcement on the measurement, i.e. the NMR signal, needs to be studied. The results show a shift of the NMR profile as well as an increase of the signals amplitude in the case of the reinforced samples, while calculating the thickness of concrete coating leading to identical results.


2001 ◽  
Vol 28 (4) ◽  
pp. 583-592 ◽  
Author(s):  
Amin Ghali ◽  
Tara Hall ◽  
William Bobey

To avoid excessive deflection most design codes specify the ratio (l/h)s, the span to minimum thickness of concrete members without prestressing. Use of the values of (l/h)s specified by the codes, in selecting the thickness of members, usually yields satisfactory results when the members are reinforced with steel bars. Fibre reinforced polymer (FRP) bars have an elastic modulus lower than that of steel. As a result, the values of (l/h)s specified in codes for steel-reinforced concrete would lead to excessive deflection if adopted for FRP-reinforced concrete. In this paper, an equation is developed giving the ratio (l/h)f for use with FRP bars in terms of (l/h)s and (εs/εf), where εs and εf are the maximum strain allowed at service in steel and FRP bars, respectively. To control the width of cracks, ACI 318-99 specifies εs = 1200 × 10–6 for steel bars having a modulus of elasticity, Es, of 200 GPa and a yield strength, fy, of 400 MPa. At present, there is no value specified for εf; a value is recommended in this paper.Key words: concrete, cracking, deflection, fibre reinforced polymers, flexural members, minimum thickness.


2019 ◽  
Vol 292 ◽  
pp. 191-196 ◽  
Author(s):  
Tomáš Augustín ◽  
Ľudovít Fillo ◽  
Jaroslav Halvonik

Experimental programs focused on the issues related to the flat slabs still attract the attention of the scientists around the world. At the Central Laboratories of STU in Bratislava, together 8 fragments of the flat slabs were tested, focusing on the influence of the openings on the punching resistance. The two reference specimens were without openings and the others had two symmetrically placed openings. The openings were moved from the face of the column in multiples of the effective depth (0d, 1d, 2d). For the assessment of the tests, the models introduced in the relevant standards and codes were applied. The experimental results were also used for NFEM model calibration. The paper will deal with comparison of the theoretical and experimental results as well as with non-linear analysis that was performed in the ATENA FEM program, with the goal to obtain the most realistic behaviour of the flat slabs with openings. The material properties used in the analysis were obtained from the laboratory tests.


2020 ◽  
Vol 1002 ◽  
pp. 604-614
Author(s):  
Hayder Hussein H. Kammona ◽  
Muhammad Abed Attiya ◽  
Qasim M. Shakir

This study simulates a procedure of rehabilitation of reinforced concrete beams with the aid of ANSYS 17 software. In this work, the BIRTH and DEATH procedure (in ANSYS) was adopted to model the post-repairing stage. This aspect has rarely been considered by previous studies that utilized a carbon fiber reinforced polymer (CFRP) sheet when retrofitting. To verify the suggested technique, six specimens were analyzed with two values of shear span-to-depth ratios (3 and 4) and three spaces of CFRP sheets (100mm, 150mm and 200mm). The effect of the repairing process on the structural performance of the retrofitted beam is also investigated.It is found that the suggested technique yielded a good agreement with the experimental results and the maximum differences in the failure loads between the numerical and experimental results were 10% and 4% for shear span-to-depth ratios of 3 and 4, respectively. It was also ascertained that upgrading reinforced concrete members within the early stages of loading showed a better enhancement in the loading capacity compared to upgrading reinforced concrete members close to the juncture of failure.


1998 ◽  
Vol 7 (6) ◽  
pp. 096369359800700 ◽  
Author(s):  
E. Gutiérrez ◽  
G. Di Salvo ◽  
J.M. Mieres ◽  
L. Mogensen ◽  
E. Shahidi ◽  
...  

In this paper we outline the development of an all-in-one composite reinforcing formwork system for manufacturing reinforced concrete elements, in particular, we describe the main experimental tests carried out on an 8 metre beam using high strength concrete poured and bonded on a hybrid, glass/carbon fibre formwork.


Author(s):  
Belal Elharouney ◽  
Ayman Hussein ◽  
Ezz El-Deen Mostafa ◽  
Amr El-Nemr

The post-tensioned (PT) reinforced beams can provide a fast construction advantage through precast and cast-in-situ structural elements. However, due to the excessive increase in load capacity, especially when it comes to girder of bridges, the strengthening using Fiber-reinforced polymer (FRP) might be a solution. Near-surface mounted (NSM) is one of the methods used in strengthening cases, especially in the case of non-degraded concrete cover. Furthermore, very few researchers visited this area experimentally, which consider cost-effective. In this paper, two finite element models using the Abaqus program validated experimental results for both Post-tension beam and strengthening of the beam using NSM separately as preliminary models for combining both systems. PT reinforced concrete beam subjected to four-point bending loading as well as reinforced concrete beam strengthened with NSM using FRP bars subjected to two-point bending loading examined and validated through a 3D non-linear finite element (FE) model to be compared by the experimental results. This FE model considered the non-linear constitutive properties of concrete, yielding of steel, and the bond between strand, concrete, and FRP bars at NSM. The models were targeting the strengthening of existing Post tension girder beams of existing bridges structures. These modeling results showed a reasonable agreement with the tested beam results in terms of failure modes, the load capacity, load-deflection curve, and cracking behavior.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Valdemir Colares Pinto ◽  
Vitor Branco ◽  
Denio Ramam Oliveira

Purpose This study aims to contribute to a better understanding of the influence of the position of openings around L cross-section columns in reinforced concrete flat slabs through a nonlinear computational analysis compared to experimental results. Design/methodology/approach Tests on four reinforced concrete flat slabs of 1800 x 1800 x 120 mm3 were carried out under symmetrical punching; one slab was referenced (without hole) and three had square holes of 100 x 100 mm2 close to columns and with centroid on the critical perimeter at 0.5 d and 2.0 d of the loaded area. A nonlinear analysis of the slabs was performed to aid the interpretation and preview of the experimental results, and to estimate the ultimate loads and failure modes. These estimates followed recommendations of ACI 318, Eurocode 2, NBR 6118, MC 2010 and critical shear crack theory. Findings The results showed that the presence of holes in the analyzed regions does not influence significantly the behavior of the slabs, leading to conservative structural design once the ultimate load estimates are low, while the computational results adequately estimated the slabs’ behavior. Research limitations/implications A few limitations were observed on how to implement the correct modeling system for computational nonlinear simulation. Practical implications All design codes underestimated failure loads and the theoretical method was not much better. The nonlinear computational simulations were satisfactory, presenting results close to experimental ones (97 per cent accuracy). Computational simulation also showed that the presence of holes does not significantly influence the load-vertical displacement behavior or failure loads. Social implications Structural and civil engineers and designers can observe with better details the punching phenomenon and make take secure decisions to building projects. They can preview accurate cases that are not cited in design codes and literature. Originality/value This is a very rare subject in literature that interests the entire scientific community and especially reinforced concrete designers. Presenting a new methodology to nonlinear flat slab with openings modeling to punching shear provoked by L cross section columns, case that is not cited in literature and design codes.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 436
Author(s):  
Leonid Storozhenko ◽  
Pavlo Semko ◽  
Olena Yefimenko

Stress-strain state and compressed flexible steel-reinforced concrete elements resistance capacity are investigated in the work. The experiment program is complied and steel reinforced concrete elements calculations methods are analyzed. Experimental sample design drawings are shown. Raw materials physical and mechanical properties are determined. Steel reinforced-concrete elements experimental and research studies have been carried out. Coboundary dependences N-M for steel reinforced concrete elements construction method is proposed. Resistance capacity diagrams for steel reinforced concrete elements are constructed depending on the element height and the applied eccentricity.  


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 160 ◽  
Author(s):  
Bossio ◽  
Imperatore ◽  
Kioumarsi

Worldwide, steel corrosion is one of the greatest deterioration problems for reinforced concrete structures. Comparing some experimental results from literature with a complex FEM model, the present paper points out the principal aspects that characterize the static behavior of reinforced concrete (RC) elements damaged by corrosion. Moreover, the nondimensional abaci defined for some specific case studies finalized to the evaluation of the residual flexural strength of corroded elements highlight the dangerousness of the corrosion degradation if the failure of the element is governed by the steel.


Sign in / Sign up

Export Citation Format

Share Document