scholarly journals A 2.9 GPa Strength Nano-Grained and Nano-Precipitated 304L-Type Austenitic Stainless Steel

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5382
Author(s):  
Congcong Du ◽  
Guoying Liu ◽  
Baoru Sun ◽  
Shengwei Xin ◽  
Tongde Shen

Austenitic stainless steel has high potential as nuclear and engineering materials, but it is often coarse grained and has relatively low yield strength, typically 200–400 MPa. We prepared a bulk nanocrystalline lanthanum-doped 304L austenitic stainless steel alloy by a novel technique that combines mechanical alloying and high-pressure sintering. The achieved alloy has an average grain size of 30 ± 12 nm and contains a high density (~1024 m−3) of lanthanum-enriched nanoprecipitates with an average particle size of approx. 4 nm, leading to strong grain boundary strengthening and dispersion strengthening effects, respectively. The yield strength of nano-grained and nano-precipitated stainless steel reaches 2.9 GPa, which well exceeds that of ultrafine-grained (100–1000 nm) and nano-grained (<100 nm) stainless steels prepared by other techniques developed in recent decades. The strategy to combine nano-grain strengthening and nanoprecipitation strengthening should be generally applicable to developing other ultra-strong metallic alloys.


2013 ◽  
Vol 829 ◽  
pp. 177-181 ◽  
Author(s):  
Reyhane Nafar Dehsorkhi ◽  
Soheil Sabooni ◽  
Fathallah Karimzadeh ◽  
Ahmad Rezaeian ◽  
Mohammad Hossein Enayati

An ultrafine grained 304L stainless steel with average grain size of 650±100 nm was produced by a combination of cold rolling and annealing. Wear behavior of the steel was examined by dry sliding wear tests under different loads. Different microstructural characterizations were conducted on the ultrafine grained structure after thermomechanical processing and wear tests. The results demonstrated that the steel had yield strength of 720 MPa and total elongation of 47%, which is almost twice higher than typical coarse grained strength. Also, wear tests results showed a good linear relation between the cumulative wear loss and distance in each normal load. Wear rate was about 0.024, 0.043 and 0.093 mg/m for normal loads of 10, 20 and 30N, respectively. Wear mechanism was also recognized as delamination (in the early stage) and mixture of delamination and abrasion in higher distances.





Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1148 ◽  
Author(s):  
Roman Husák ◽  
Hynek Hadraba ◽  
Zdeněk Chlup ◽  
Milan Heczko ◽  
Tomáš Kruml ◽  
...  

Oxide dispersion-strengthened (ODS) materials contain homogeneous dispersions of temperature-stable nano-oxides serving as obstacles for dislocations and further pinning of grain boundaries. The strategy for dispersion strengthening based on complex oxides (Y-Hf, -Zr, -Ce, -La) was developed in order to refine oxide dispersion to enhance the dispersion strengthening effect. In this work, the strengthening of EUROFER steel by complex oxides based on Y and elements of the IIIB group (lanthanum, scandium) and IVB group (cerium, hafnium, zirconium) was explored. Interparticle spacing as a dispersoid characteristic appeared to be an important factor in controlling the dispersion strengthening contribution to the yield strength of ODS EUROFER steels. The dispersoid size and average grain size of ODS EUROFER steel were altered in the ranges of 5–13 nm and 0.6–1.7 µm, respectively. Using this strategy, the yield strength of the prepared alloys varied between 550 MPa and 950 MPa depending on the doping element.



2009 ◽  
Vol 21 (12) ◽  
pp. 1280-1285 ◽  
Author(s):  
R.D.K. Misra ◽  
W-W. Thein-Han ◽  
T.C. Pesacreta ◽  
K.H. Hasenstein ◽  
M.C. Somani ◽  
...  


Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

The test of austenitic stainless steel specimens with strain control mode of pre-strain was carried out. The range of pre-strain is 4%, 5%, 6%, 7%, 8%, 9% and 10% on austenitic stainless steel specimens, then tensile testing of these samples was done and their mechanical properties after pre-strain were gotten. The results show that the pre-strain has little effect on tensile strength, and enhances the yield strength more obviously. According to the experimental data, we get a relational expression of S30408 between the value of yield strength and pre-strain. We can obtain several expressions about different kinds of austenitic stainless steel by this way. It is convenient for designers to get the yield strength of austenitic stainless steel after pre-strain by the value of pre-strain and the above expression.



2011 ◽  
Vol 474-476 ◽  
pp. 1711-1714 ◽  
Author(s):  
Panadda Sittiketkron ◽  
Arrak Klinbumrung ◽  
Theerachai Bongkarn

This study investigated the influence of excess Bi2O3 and Na2CO3 on the crystal structure, microstructure and dielectric properties of (Bi0.5Na0.5)TiO3 (BNT) ceramics. The BNT ceramics were synthesized using the solid-state reaction method with various excess Bi2O3 and Na2CO3 levels (0, 1, 2, 3 and 4 mol%). The X-ray characterization revealed that all samples had a rhombohedral structure. A pure perovskite phase was obtained in all samples. The lattice parameter a tended to increase with increased excess Bi2O3 and Na2CO3 content in the calcined powders and sintered ceramics. The average particle size increased while, the average grain size tended to decreased with increased of excess Bi2O3 and Na2CO3 content. The depolarization temperature (Td) and the Curie temperature (Tc) were slightly decreased with the increase of excess Bi2O3 and Na2CO3 content. The dielectric properties were related to the density.



Sign in / Sign up

Export Citation Format

Share Document