scholarly journals A New Preparation Method of Cement with Photocatalytic Activity

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5540
Author(s):  
Magdalena Janus ◽  
Szymon Mądraszewski ◽  
Kamila Zając ◽  
Ewelina Kusiak-Nejman

The studies of some mechanical properties and photocatalytic activity of new cements with photocatalytic activity are presented. The new building materials were obtained by addition of semi-product from titanium white production. Semi-product was calcined at 300 and 600 °C for one, three, and five hours and then this material was added to cement matrix in an amount of 1 and 3 wt.%. New materials were characterized by measuring the flexural and compressive strength and the initial and the final setting time. The photocatalytic activity was tested during NOx photooxidation. The cement with photocatalytic activity was also characterized by sulphur content measurements. The measurement of reflectance percentage of TiO2-loaded cements in comparison with pristine cement and TiO2 photocatalyst calcined at 600 °C were also performed. It should be emphasized that although in some cases, the addition of photocatalyst reduced the flexural and the compressive strength of the modified cements, these values were still within the norm PN-EN 197-1:2012. It was also found that the initial and the final setting time is connected with the crystal size of anatase, and the presence of larger crystals significantly delays of the setting time. This was probably caused by a water adsorption on the surface of anatase crystals.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3756 ◽  
Author(s):  
Magdalena Janus ◽  
Szymon Mądraszewski ◽  
Kamila Zając ◽  
Ewelina Kusiak-Nejman ◽  
Antoni W. Morawski ◽  
...  

In this paper, studies of the mechanical properties and photocatalytic activity of new photoactive cement mortars are presented. The new building materials were obtained by the addition of 1, 3, and 5 wt % (based on the cement content) of nitrogen-modified titanium dioxide (TiO2/N) to the cement matrix. Photocatalytic active cement mortars were characterized by measuring the flexural and the compressive strength, the hydration heat, the zeta potential of the fresh state, and the initial and final setting time. Their photocatalytic activity was tested during NOx decomposition. The studies showed that TiO2/N gives the photoactivity of cement mortars during air purification with an additional positive effect on the mechanical properties of the hardened mortars. The addition of TiO2/N into the cement shortened the initial and final setting time, which was distinctly observed using 5 wt % of the photocatalyst in the cement matrix.


2010 ◽  
Vol 150-151 ◽  
pp. 1143-1151
Author(s):  
Chau Lee ◽  
Nian Fu Wang ◽  
Meng Xun Xiem

This research mainly probes into the analysis of performance and assessment that ethyl acrylate polymer is applied to the cement matrix. The result shows that, before and after the purification, ethyl acrylate can increase the flowability of modified mortar, and with the increasing the dosage of polymer, the flowability is getting better. But if the dosage of hydrogen peroxide used to remove the residua alcohol is excessive, it is easy to cause high mortar viscosity, and that is unfavorable to the flowability. According to the setting time of the mortar under normal consistency, the result shows that the ethyl acrylate before the purification, has retarding effects on both initial and final setting time. With the increasing the dosage of polymer, it takes longer for both setting time. Besides, because hydrogen peroxide has accelerative effect, the purified ethyl acrylate can shorten the setting time of initial and final setting time. However, over dosage of hydrogen peroxide can easily lead to poor strength development in later stage. Using purified ethyl acrylate can overcome the shortcoming of lower strength of 3、7- day early stage. when hydrogen peroxide consumption is 0.5% of the total amount of acid and alcohol, the ethyl acrylate has the positive effect on improving the compressive strength. Finally, among the comprehensive assessments of the mortar testing results, EH0.5-0.1 has the significant effect of modification.


2008 ◽  
Vol 396-398 ◽  
pp. 213-216 ◽  
Author(s):  
Daniela Jörn ◽  
Renate Gildenhaar ◽  
Georg Berger ◽  
Michael Stiller ◽  
Christine Knabe

The setting behaviour, the compressive strength and the porosity of four calcium alkali orthophosphate cements were examined under laboratory conditions (dry) and under conditions similar to those during clinical application (37°C, contact with body fluid). The results showed an increase of the setting times when specimens were covered with simulated body fluid. Especially, the final setting time (FHZ) was significantly higher for three of the four cements. Furthermore, when specimens were stored in SBF for 16h, an extensive decrease of the compressive strength was noted. The porosity was more than twice as high after 16h in SBF and this may be the cause for the great decrease of the compressive strength.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7570
Author(s):  
Min Jae Kim ◽  
Woong Ik Hwang ◽  
Won Jung Cho

This study investigated the air aging converter (Basic Oxygen Furnace, BOF) slag aggregate mortar with pulverized fly ash (PFA) and ferronickel slag (FNS). The chemical composition and mineralogical constituents of BOF incorporated mortar were analyzed. Setting time, flowability, compressive strength, and length change were measured to evaluate the fundamental properties of BOF mortar. The X-ray CT analysis was employed to observe the effect of converter slag in the cement matrix visually. The results showed that the hydration of BOF generated a pore at the vicinity of the aggregate, which decreased the compressive strength and increased the length change of mortar. However, the PFA or FNS incorporation of PFA or FNS can decrease the alkalinity of pore solution and subsequently reduce the reactivity of BOF aggregate. Thus, the incorporation of PFA and FNS can be a way to eliminate the disadvantage of BOF, such as volume expansion.


2018 ◽  
Vol 382 ◽  
pp. 230-234
Author(s):  
Ming Ju Lee ◽  
Ming Gin Lee ◽  
Yung Chih Wang ◽  
Yu Min Su ◽  
Jia Lun Deng

In order to let fresh concrete react with carbon dioxide sufficiently, the carbon dioxide was added to mixing concrete. The study used three water cement ratio (0.55, 0.65, 0.75), three CO2 pressures (0.2, 0.4, 0.6 MPa), and two CO2 concentration (50% and 100%) to make concrete samples, and observed the effect of carbon dioxide adsorption in the above parameters. Finally, the compressive strength and carbonation degree of concretes were tested after three curing time (7, 14 and 28 days). The research showed that concrete could be more efficient to absorb carbon dioxide by using this pressure method. The results found that the mixing concrete react with carbon dioxide in a short time, and shorten the initial setting time of concrete. But this method would greatly reduce the workability of concrete after mixing with carbon dioxide and it might be enhanced by water or superplasticizer. The bond of cement matrix might cut down after reacting with carbon dioxide. Based on the above, the compressive strength of concrete which was mixed with carbon dioxide would be impaired. The proposed CO2-mixing method has the capacity to uptake 9.5% carbon dioxide based on water cement ratio and CO2 pressure.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2415 ◽  
Author(s):  
Zhu Ding ◽  
Xiaodong Wang ◽  
Jay Sanjayan ◽  
Patrick Zou ◽  
Zhi-Kun Ding

A novel 3D printing material based on hydroxypropyl methylcellulose (HPMC)—improved sulphoaluminate cement (SAC) for rapid 3D construction printing application is reported. The hydration heat, setting time, fluidity of paste and mortar, shape retainability, and compressive strength of extruded SAC mortar were investigated. HPMC dosage, water-to-cement (W/C) ratio, and sand-to-cement (S/C) ratio were studied as the experimental parameters. Hydration heat results reveal HPMC could delay the hydration of SAC. The initial and final setting time measured using Vicat needle would be shortened in the case of W/C ratio of 0.3 and 0.35 with HPMC dosage from 0.5% to 1.5%, W/C ratio of 0.40 with HPMC dosage of 0.5%, 0.75%, and 1.5%, and W/C ratio of 0.45 with HPMC dosage of 0.45, or be extended in the case of W/C ratio of 0.4 with HPMC dosage of 1.0% and W/C ratio of 0.45 with HPMC dosage from 0.75% to 1.5%. Fluidity measurement shows HPMC significantly improves the shape retainability. Furthermore, the addition of HPMC remarkably increased the compressive strength of extruded mortar. The results showed that HPMC could be used to prepare 3D printing SAC having satisfactory shape retainability, setting time and compressive strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Valdir M. Pereira ◽  
Gladis Camarini

Self-leveling mortar (SLM) has several advantages when compared to the conventional mortar used in subfloors, especially when productivity is desired. In Brazil, the use of SLM is not still widespread related to conventional mortar. Few builders are using it in constructions. In the same way, the sustainable reuse of wastes in building materials is not so great, but it has grown, becoming increasingly important. In Brazil, a great amount of waste is generated by the manufacture of electrical porcelain insulators and red ceramic. These materials are formed mainly by amorphous silicates and aluminosilicates, which when added as cement replacement can generate pozzolanic reactions. The present study evaluated the feasibility of using such wastes to replace cement to make SLM. Mortars were studied in the fresh state (fluidity, segregation and/or bleeding, outflow rate, outflow time, and kinetics of temperature) and in the hardened state (compressive strength, flexural tensile strength, capillary water absorption, water penetration height, and air permeability). According to the results, the cement replacement by porcelain or ceramic in SLM diminishes the flow and increases the setting time. The compressive strength is higher than the minimum related to literature, and the low values of water absorption and permeability were reached with porcelain waste.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1033 ◽  
Author(s):  
Yuli Wang ◽  
Fengxia He ◽  
Junjie Wang ◽  
Qianku Hu

Carbonates and bicarbonates are two groups of accelerators which can be used in sprayed concrete. In this study, the effects of the two accelerators sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3) (0%, 1%, 2%, 3%, and 4% by weight of ordinary Portland cement OPC) on the properties of OPC paste were compared. The results show that both of them could accelerate the initial and final setting time of OPC paste, but the effect of the two accelerators on the compressive strength were different. After 1 day, sodium bicarbonate at 3% had the highest strength while sodium carbonate at 1% had the highest strength. After 7 days, both of the two accelerators at 1% had the highest compressive strength. After 28 days, the compressive strength decreased with the increase of the two. The improved strength at 1 and 7 days was caused by the accelerated formation of ettringite and the formation of CaCO3 through the reactions between the two with portlandite. The decrease of strength was caused by the Na+ could reduce the adhesion between C-S-H gel by replacing the Ca2+. NaHCO3 was found be a better accelerator than Na2CO3.


2017 ◽  
Vol 28 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Camila de Paula Telles Pires Lucas ◽  
Raqueli Viapiana ◽  
Roberta Bosso-Martelo ◽  
Juliane Maria Guerreiro-Tanomaru ◽  
Josette Camilleri ◽  
...  

Abstract The aim of this study was to evaluate the physicochemical properties and the apical dentin bond strength of the tricalcium silicate-based Biodentine in comparison to white MTA and zinc oxide eugenol-based cement (ZOE). Setting time and radiopacity were evaluated according to ISO 6876:2012 specification. Final setting time, compressive strength and pH were also assessed. Material’s bond strength to the apical root canal dentin was measured by the push-out assay. Data were analyzed by ANOVA and Tukey-Krammer post-hoc test. Biodentine presented the shortest initial (16.2±1.48 min) and final setting time (35.4±5.55 min). Radiopacity of Biodentine (2.79±0.27 mmAl) does not agree with ISO 6876:2012 specifications. On the other hand, Biodentine showed higher compressive strength after 21 days (37.22±5.27 MPa) and higher dentin bond strength (11.2±2.16 MPa) in comparison to white MTA (27.68±3.56 MPa for compressive strength and 2.98±0.64 MPa for bond strength) (p<0.05). Both MTA and Biodentine produced an alkaline environment (approximately pH 10) (p>0.05) compared to ZOE (pH 7). It may be concluded that Biodentine exhibited faster setting, higher long-term compressive strength and bond strength to the apical dentin than MTA and ZOE.


2021 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Tiago Trigo ◽  
Inês Flores-Colen ◽  
Luís Silva ◽  
Nuno Vieira ◽  
Ana Raimundo ◽  
...  

The production of Portland cement (OP) is commonly associated to significant level of energy consumption and gas emissions. The use of calcium sulfoaluminate cement (CSA) can be a sustainable alternative binder, since its production releases about half of the CO2 emissions and its clinker requires 200 °C lower temperatures, when compared to OP. Furthermore, CSA has fast setting time and achieves higher strength in shorter periods, as well as reduced shrinkage. This paper discusses the incorporation of CSA in rendering mortars and basecoat mortars for ETICS (External Thermal Insulation Composite Systems). The physical-mechanical properties of mortars made with OP and CSA cements were experimental evaluated. The results showed that the introduction of CSA generally improves shrinkage, compressive strength, water absorption at low pressure, enhances the tensile bending strength and decreases the setting time. The amount of CSA introduced into the mixture significantly affected the properties of the cement matrix.


Sign in / Sign up

Export Citation Format

Share Document