scholarly journals Preparation and Tribological Properties of Modified MoS2/SiC/Epoxy Composites

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1731
Author(s):  
Cheng Liu ◽  
Meijuan Li ◽  
Qiang Shen ◽  
Haikun Chen

In order to improve the tribological properties of epoxy (EP), EP composites were prepared by filling different proportions of silicon carbide (SiC) particles and molybdenum disulfide (MoS2) powder. SiC and MoS2 particle surfaces were modified by the silane coupling agent KH560 to improve dispersion and avoid agglomeration of the inorganic particles in the EP resin matrix. The effect of different proportions of modified MoS2 content on the tribological properties of SiC/EP composites, and the wear mechanism of the worn surface, were investigated when the filler content was fixed at 55 wt.%. The results indicate that the friction and wear properties of modified MoS2/SiC/EP composites are better than SiC/EP composites without modified MoS2. When the modified MoS2 content is 4 wt.%, the average friction coefficient and volume wear rate of the modified MoS2/SiC/EP composite are 0.447 and 14.39 × 10−5 mm3/N·m, respectively, which is reduced by 10.06% and 52.13% in comparison with that of the 55 wt.% SiC/EP composite. Furthermore, the average friction coefficient of a composite containing 4 wt.% MoS2 is 16.14% lower, and the volume wear rate is 92.84% lower than that of pure EP.

2011 ◽  
Vol 399-401 ◽  
pp. 1946-1950 ◽  
Author(s):  
Wen Jing Li ◽  
Chang Sheng Li ◽  
Kong Qiang Wu

The inorganic materials(MoSe2/C) and MoSe2 were synthesized via solid-state reaction methods and characterized by a series of techniques. The growth process of the products was discussed on the basis of the experimental facts. The tribological properties of MoSe2/C and MoSe2as additives in 150bn basic oil were investigated by UMT-2 multispecimen tribotester. Under the determinate conditions, the friction coefficient of the basic oil containing MoSe2/C (or MoSe2) was lower than that of the basic oil. Moreover, the tribological property of the basic oil with the MoSe2/C was better than that with MoSe2nanoflakes. A combination of sliding friction, stable tribofilm and fill in-repair mechanisms on the rubbing surface could explain the good friction and wear properties of MoSe2/C and MoSe2as additives.


2017 ◽  
Vol 733 ◽  
pp. 60-64
Author(s):  
Munir Tasdemir ◽  
Ozkan Gulsoy

In the present work, the friction and wear properties of Polypropylene (PP) based composites filled with Hydroxyapatite (HA) particles were studied. Fillers contents in the PP were 10, 20, and 30 wt%. The effects of hydroxyapatite ratio on the water absorption, friction and wear properties of the polymer composites is presented. The result showed that the addition of HA to the composite changed the water absorption, friction coefficient and wear rate.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Fei-xia Zhang ◽  
Yan-qiu Chu ◽  
Chang-sheng Li

This paper presents a facile and effective method for preparing Ni/NbSe2 composites in order to improve the wettability of NbSe2 and copper matrix, which is helpful in enhancing the friction-reducing and anti-wear properties of copper-based composites. The powder metallurgy (P/M) technique was used to fabricate copper-based composites with different weight fractions of Ni/NbSe2, and tribological properties of composites were evaluated by using a ball-on-disk friction-and-wear tester. Results indicated that tribological properties of copper-based composites were improved by the addition of Ni/NbSe2. In particular, copper-based composites containing 15 wt.% Ni/NbSe2 showed the lowest friction coefficient (0.16) and wear rate (4.1 × 10−5 mm3·N−1·m−1) among all composites.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1224
Author(s):  
Zheng Wei ◽  
Yuping Wu ◽  
Sheng Hong ◽  
Weihua Yang ◽  
Wei Shi

In this study, the CoCrAlYTa-10%Al2O3 coatings were prepared by the high-velocity oxygen-fuel (HVOF) spraying. A series of ball-on-disk sliding wear tests were conducted to evaluate the tribological properties of the coatings at different temperatures (25 °C, 200 °C, 400 °C, and 600 °C). The results showed that the average coefficients of friction (COFs) of the CoCrAlYTa-10%Al2O3 coatings were lower than that of H13 steel at different temperatures. The average COFs of the CoCrAlYTa-10%Al2O3 coatings and H13 steel both decreased with increasing temperature. The wear rate of the CoCrAlYTa-10%Al2O3 coatings increased first and then decreased. The microhardness of worn surface of the CoCrAlYTa-10%Al2O3 coatings increased with increasing temperature, while the microhardness of worn surface of H13 steel at 25 °C and 200°C was higher than that at 400 °C and 600 °C. The wear mechanism of the two materials was mainly abrasive wear. The tribofilms were formed on the worn surface of the CoCrAlYTa-10%Al2O3 coatings, which had a good protective effect. Due to thermal softening and low binding strength of debris, it was difficult for H13 steel to form the tribofilms. The wear rate of H13 steel was much higher than that of the CoCrAlYTa-10%Al2O3 coatings at 400 °C and 600 °C, indicating that the high temperature wear resistance of the coatings was much better than that of H13 steel.


Friction ◽  
2020 ◽  
Author(s):  
Kang Liu ◽  
Jia-jie Kang ◽  
Guang-an Zhang ◽  
Zhi-bin Lu ◽  
Wen Yue

AbstractDiamond-like carbon (DLC) and graphite-like carbon (GLC) coatings have good prospects for improving the surface properties of engine parts. However, further understanding is needed on the effect of working conditions on tribological behaviors. In this study, GLC and two types of DLC coatings were deposited on GCr15 substrate for investigation. The friction and wear properties of self-mated and steel-mated pairs were evaluated. Two temperatures (25 and 90 °C), three lubrication conditions (base oil, molybdenum dithiocarbamate (MoDTC)-containing oil, MoDTC+zinc dialkyldithiophosphate (ZDDP)-containing oil), and high Hertz contact stress (2.41 GPa) were applied in the experiments. The results showed that high temperature promoted the effect of ZDDP on steel-mated pairs, but increased wear under base oil lubrication. The increased wear for steel-mated pairs lubricated by MoDTC-containing oil was due to abrasive wear probably caused by MoO3 and β-FeMoO4. It was also found that in most cases, the tribological properties of self-mated pairs were better than those of steel-mated pairs.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhen-yu Wang ◽  
Jie Wang ◽  
Yun-hai Ma

Corn stalk fibre reinforced nonasbestos environment-friendly friction composite materials have been fabricated, and their physical, mechanical, and tribological properties are characterized. The tribological properties of the friction composites were evaluated following GB5763-2008 norms on a constant-speed-type friction tester. The experimental outcome reveals that the content of corn stalk fibre has a noteworthy impact on the tribological, mechanical, and physical properties of the friction composites. Specifically, the friction composite with a content of 7% exhibited excellent friction and wear properties. The worn surface morphology of friction composites was further investigated using a scanning electron microscope. It was found that the corn stalk fibre content greatly affected the tribological properties of the friction composites.


2008 ◽  
Vol 368-372 ◽  
pp. 961-963
Author(s):  
Hou An Zhang ◽  
Xiao Pin Hu ◽  
Wei Cheng Tan ◽  
Cun Shi

MoSi2 was prepared by SHS, and then pressed under 300 MPa at room temperature and sintered at 1600 °C for 1 h in a vacuum furnace. The tribological properties of MoSi2 against Al2O3 in the temperature range from 700°C to 1100 °C were investigated. Microphotographs and phases of the worn surface of MoSi2 were observed by SEM and XRD. Results showed that MoSi2 has well friction and wear properties below 900 °C. When temperature rises from 900 °C to 1000 °C, wear rate of MoSi2 is raised by 20.8% which is attribute to the change of wear mechanism. The main wear mechanisms of MoSi2 are adhesion and oxidation at high temperatures. When over 900 °C, because of ductile - brittle transition characteristic of this material, plastic deformation and fracture are also found on the worn surface of MoSi2. This leads to the high wear rate of MoSi2.


2011 ◽  
Vol 197-198 ◽  
pp. 540-543 ◽  
Author(s):  
Zhi De Hu ◽  
Hua Yan ◽  
Xue Mei Wang ◽  
Hai Zhe Qiu

Magnetorheological fluid (MRF) is a new kind of smart material, it is very necessary for us to study its tribological properties because it will be widely used in engineering application. In this paper, the tribological behavior of Carbonyl Iron-based magnetorheological fluid (MRF) was investigated on a four-ball tribological tester, the influence of lubricant on friction coefficient and wear scar diameter was discussed, the morphology of the wear steel surfaces lubricated with MRF were observed by a scanning electron microscope. The results show that the addition of MoS2can significantly improve the tribological properties of clay-based MRF. However, the friction and wear properties of silica-based MRF become bad after the addition of MoS2. The morphology of worn surface lubricated with the MRF added MoS2is similar to that without additive, but the groove of wear marks lubricated with clay-based MRF is more shallower and the area of the worn surface is smaller in the condition of adding MoS2.


Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4547
Author(s):  
Bin Yang ◽  
Aiqin Wang ◽  
Kunding Liu ◽  
Chenlu Liu ◽  
Jingpei Xie ◽  
...  

SiCp/Al-Si composites with different CeO2 contents were prepared by a powder metallurgy method. The effect of CeO2 content on mechanical properties, friction and wear properties of the composites was studied. The results show that with the increase in CeO2 content from 0 to 1.8 wt%, the density, hardness, friction coefficient of the composites first increases and then decreases, the coefficient of thermal expansion (CTE) and wear rate of the composites first decreases and then increases. When the content of CeO2 was 0.6 wt%, the density and hardness of the composite reached the maximum value of 98.54% and 113.7 HBW, respectively, the CTE of the composite reached the minimum value of 11.1 × 10−6 K−1, the friction coefficient and wear rate of the composite reached the maximum value of 0.32 and the minimum value of 1.02 mg/m, respectively. CeO2 has little effect on the wear mechanism of composites, and the wear mechanism of composites with different CeO2 content is mainly abrasive wear under the load of 550 N. Compared with the content of CeO2, load has a great influence on the wear properties of the composites. The wear mechanism of the composites is mainly oxidation wear and abrasive wear under low load. With the increase in load, the wear degree of abrasive particles is aggravated, and adhesive wear occurs under higher load.


2014 ◽  
Vol 788 ◽  
pp. 621-626 ◽  
Author(s):  
Jing Dan Wei ◽  
Hua Chen

Cu-based friction materials were prepared by powder metallurgy technology. The effect of the graphite on friction and wear properties of materials was investigated. The experimental results indicate that the wear rate of the materials increased with increasing speed. The wear rate of the materials with the graphite with the size of 300~600μm decreased with increasing graphite content, indicating that the graphite size of 300~600μm showed the good lubricating effect. The lubricating film made the friction coefficient decrease. The wear resistance of materials with 100~300μm graphite was degraded at high graphite content, and the graphite size of 100~300μm has bad effect on the strength of materials. The wear debris made the friction coefficient slightly increase with the increase of graphite content. The material with the graphite content of 10% and the graphite size of 300~600μm has the best friction and wear properties.


Sign in / Sign up

Export Citation Format

Share Document