scholarly journals Effects of Fe Impurities on Self-Discharge Performance of Carbon-Based Supercapacitors

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1908
Author(s):  
Yuting Du ◽  
Yan Mo ◽  
Yong Chen

Activated carbon is widely used as an electrode material in supercapacitors due to its superior electrochemical stability, excellent electrical conductivity, and environmental friendliness. In this study, the self-discharge mechanisms of activated carbon electrodes loaded with different contents of Fe impurities (Fe and Fe3O4) were analyzed by multi-stage fitting to explore the tunability of self-discharge. It is was found that a small quantity of Fe impurities on carbon materials improves the self-discharge performance dominated by redox reaction, by adjusting the surface state and pore structure of carbon materials. As the content of Fe impurities increases, the voltage loss of activated carbon with the Fe impurity concentrations of 1.12 wt.% (AF-1.12) decreases by 37.9% of the original, which is attributable to the reduce of ohmic leakage and diffusion, and the increase in Faradic redox at the electrode/electrolyte interface. In summary, self-discharge performance of carbon-based supercapacitors can be adjusted via the surface state and pour structure, which provides insights for the future design of energy storage.

2021 ◽  
Vol 10 (4) ◽  
pp. 08-12
Author(s):  
C. Thevamirtha ◽  
Sherin Monichan ◽  
P. Mosae Selvakumar

Plant-based carbon materials are a high-demand source nowadays, as they are low-cost, eco-friendly, easily available, and sustainable.  Borassus flabellifer (Palmyra palm) is a gift of nature that gives numerous benefits, as all parts of the tree can be used for multiple purposes. Palmyraculture is the practice of cultivating Palmyra palms and utilizing them to live a self-reliant life in working towards sustainable development. Due to the advancement of technology, Borassus flabellifer is used to synthesize carbon materials, including hard carbon, carbon nanodots, charcoal, and activated carbon.  These carbon materials can be used in electrochemistry as anode materials, biosensing, bioimaging, catalysts, and water purification. This review mainly focuses on the carbon materials derived from the Borassus flabellifer, their applications in various fields, and further aspects that have to be considered.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


2015 ◽  
Vol 44 (46) ◽  
pp. 19956-19965 ◽  
Author(s):  
A. S. Bozzi ◽  
R. L. Lavall ◽  
T. E. Souza ◽  
M. C. Pereira ◽  
P. P. de Souza ◽  
...  

In this paper we show a very simple route for the incorporation of catalytically active niobium species on the surface of carbon materials, such as graphene oxide, carbon nanotubes and activated carbon.


2010 ◽  
Vol 18 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Baohua Zhang ◽  
Jiawen Ren ◽  
Xin Gu ◽  
Xiaohui Liu ◽  
Changlin Li ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (42) ◽  
pp. 33681-33690 ◽  
Author(s):  
Nannan Sun ◽  
Chenggong Sun ◽  
Jingjing Liu ◽  
Hao Liu ◽  
Colin E. Snape ◽  
...  

Carbon beads exhibiting potential in practical pre-combustion CO2 capture were prepared.


2015 ◽  
Vol 749 ◽  
pp. 17-21 ◽  
Author(s):  
Joanna Sreńscek Nazzal ◽  
Karolina Glonek ◽  
Jacek Młodzik ◽  
Urszula Narkiewicz ◽  
Antoni W. Morawski ◽  
...  

Microporous carbons prepared from commercial activated carbon WG12 by KOH and/or ZnCl2 treatment were examined as adsorbents for CO2 capture. The micropore volume and specific surface area of the resulting carbons varied from 0.52 cm3/g (1374 m2/g) to 0.70 cm3/g (1800 m2/g), respectively. The obtained microporous carbon materials showed high CO2 adsorption capacities at 40 bar pressure reaching 16.4 mmol/g.


Sign in / Sign up

Export Citation Format

Share Document