scholarly journals Evaluation of Rhodamine B Photocatalytic Degradation over BaTiO3-MnO2 Ceramic Materials

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3152
Author(s):  
Iwona Kuźniarska-Biernacka ◽  
Barbara Garbarz-Glos ◽  
Elżbieta Skiba ◽  
Waldemar Maniukiewicz ◽  
Wojciech Bąk ◽  
...  

Ferroelectric ceramics (BaTiO3_MnO2) with different Mn admixtures were prepared using solid-state synthesis. Elemental analysis, powder X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and impedance spectroscopy confirmed that the BaTiO3 and MnO2 coexisted in the ceramics. In addition, the high purity and homogeneity of the element distributions in the ceramic samples were confirmed. The adsorptive and photocatalytic properties of the BaTiO3 (reference sample, BTO) and BaTiO3_MnO2 materials (BTO_x, where x is wt.% of MnO2 and x = 1, 2 or 3, denoted as BTO_1, BTO_2 and BTO_3, respectively) were evaluated using Rhodamine B (RhB) as the model dye in a photocatalytic chamber equipped with a UV lamp (15 W) in the absence of additional oxidants and (co)catalysts. No adsorption of RhB dye was found for all the materials during 360 min (dark experiment). All samples were photocatalytically active, and the best results were observed for the BTO_3 material, where RhB was 70% removed from aqueous solution during 360 min of irradiation. The photodegradation of RhB in the presence of MnO2-modified BTO ceramics followed a pseudo-first order model and the rate constant of BTO_3 was about 10 times higher than that of BTO, 2 times that of BTO_2, and 1.5 times that of BTO_1. The photocatalysts could be successfully reused after thermal activation.

2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2021 ◽  
Vol 21 (11) ◽  
pp. 5784-5793
Author(s):  
K. Geetha ◽  
R. Udhayakumar

In this study, spinel NiCexFe2–XO4 (x = 0.0 - 0.5) nanoparticles (NPs) was synthesized by microwave combustion technique (MCT) utilizing the fuel of Aloe vera plant extract. The establishment of spinel cubic crystal structure was ensured by powder X-ray diffraction (PXRD) technique. The particles like nanostructured morphology were confirmed by high-resolution scanning electron microscope (HRSEM). Energy dispersive X-ray (EDX) studies confirmed the formation of spinel ferrite structure and ensured that no other elements were present. Magnetic parameters such as remanant magnetisation (Mr), coercivity (He) and saturation magnetization (Ms) were calculated from the magnetic hysteresis (M-H) loops, which exhibited ferromagnetic behaviour. The photocatalytic behavior was investigated by visible light treatment for the photocatalytic degradation (PCD) of rhodamine B (Rh-B) dye and the sample NiCe0.3Fe1.7O4 exhibits higher PCD efficiency (93.88%) than other compositions. The antibacterial activities of gram-positive S. aureus, B. subtilis, gramnegative K. pneumonia and E. coli have been investigated using undoped and Ce3+ substituted NiFe2O4 NPs and observed higher activity, which indicated that, they can be used in the bio-medical applications.


Author(s):  
Hongrui Jia ◽  
Zhigang Liang ◽  
Zhen Li ◽  
Fei Li ◽  
Linghang Wang

Ferroelectric ceramic materials with large and temperature-insensitive strain response are highly desired for the practical application of actuator in harsh environment conditions. In this work, a novel xBi(Mg1/2Zr1/2)O3-(0.55-x)PbZrO3-0.45PbTiO3 (xBMZ-PZ-0.45PT) ternary...


2009 ◽  
Vol 484 (1-2) ◽  
pp. 356-359 ◽  
Author(s):  
Abdelhedi Aydi ◽  
Hamadi Khemakhem ◽  
Annie Simon ◽  
Dominique Michau ◽  
Régnault von der Mühll

2018 ◽  
Vol 156 ◽  
pp. 08015 ◽  
Author(s):  
Muh Amin ◽  
Muhammad Subri

In this study, fabrication and characterization of ceramic membranes preparation was carried out. Porous ceramic membranes were fabricated by extrusion process from different percentage composition of CuZn on (80 wt% Clay, 10 wt% TiO2, 5 wt% Carbon and 5 wt% PVA). The fabricated membranes were sintered at 900°C for 1 hour in an electrical box furnace with heating rate 1oC/min and holding time for 1 hour. Apparent density and porosity were determined by standar methods for ceramic materials. Phase composition of the ceramic support was established by X-Ray Diffraction analysis. SEM studies of the membranes added at different CuZn were carried out.


MRS Advances ◽  
2018 ◽  
Vol 3 (61) ◽  
pp. 3543-3549
Author(s):  
Pablo González ◽  
Andrea C. De Los Santos ◽  
Jorge R. Castiglioni ◽  
María A. De León

ABSTRACTA raw clay from Uruguay was modified with aluminium to obtain an aluminium pillared clay (Al-PILC). The solids were characterized by scanning electron microscopy, X-ray diffraction and nitrogen adsorption-desorption isotherms. The Al-PILC retained the typical laminar structure of montmorillonite. The specific surface area and the microporous volume of the Al-PILC, 235 m2 g-1 and 0.096 cm3 g-1, respectively, were much higher than those of the clay. The phosphate adsorption capacity of the Al-PILC was higher than those of the clay. The phosphate adsorption kinetic followed the pseudo-first-order model for both, the clay and the Al-PILC, and the phosphate adsorption isotherm for the Al-PILC fit the Freundlich model.


Author(s):  
Nurul Sahida Hassan ◽  
Nurul Jamilah Roslani ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Nur Fatien Salleh ◽  
...  

In recent years, dyes are one of the major sources of the water contamination that lead to environmental problems. For instance, Rhodamine B (RhB) which was extensively used as a colorant in textile industries is toxic and carcinogenic. Among many techniques, photocatalytic degradation become the promising one to remove those dyes from industrial wastewater. Recently, graphene has shown outstanding performance in this application due to its intrinsic electron delocalisation which promotes electron transport between composite photocatalyst and pollutant molecules. While, copper oxide (CuO) is well-known has a lower bandgap energies compared to other semiconductors. Therefore, in this study, copper oxide supported on graphene (CuO/G) was prepared and its photocatalytic activity was tested on degradation of RhB. The catalysts were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The results showed that the interaction between copper and graphene support could enhance the photocatalytic activity. The 5 wt% CuO/G was found to give the highest degradation (95%) of 10 mg L-1 of RhB solution at pH 7 using 1 g L-1 catalyst after 4 hours under visible light irradiation. The photodegradation followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the CuO/G has a potential to be used in photocatalytic degradation of various organic pollutants.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 604
Author(s):  
Anna-Marie Lauermannová ◽  
Ondřej Jankovský ◽  
Michal Lojka ◽  
Ivana Faltysová ◽  
Julie Slámová ◽  
...  

In this study, the combined effect of graphene oxide (GO) and oxidized multi-walled carbon nanotubes (OMWCNTs) on material properties of the magnesium oxychloride (MOC) phase 5 was analyzed. The selected carbon-based nanoadditives were used in small content in order to obtain higher values of mechanical parameters and higher water resistance while maintaining acceptable price of the final composites. Two sets of samples containing either 0.1 wt. % or 0.2 wt. % of both nanoadditives were prepared, in addition to a set of reference samples without additives. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and energy dispersive spectroscopy, which were used to obtain the basic information on the phase and chemical composition, as well as the microstructure and morphology. Basic macro- and micro-structural parameters were studied in order to determine the effect of the nanoadditives on the open porosity, bulk and specific density. In addition, the mechanical, hygric and thermal parameters of the prepared nano-doped composites were acquired and compared to the reference sample. An enhancement of all the mentioned types of parameters was observed. This can be assigned to the drop in porosity when GO and OMWCNTs were used. This research shows a pathway of increasing the water resistance of MOC-based composites, which is an important step in the development of the new generation of construction materials.


2017 ◽  
Vol 82 (4) ◽  
pp. 449-463 ◽  
Author(s):  
Sanja Marinovic ◽  
Marija Ajdukovic ◽  
Natasa Jovic-Jovicic ◽  
Tihana Mudrinic ◽  
Bojana Nedic-Vasiljevic ◽  
...  

Bentonites from three different deposits (Wyoming, TX, USA and Bogovina, Serbia) with similar cation exchange capacities were sodium enriched and tested as adsorbents for Sr2+ in aqueous solutions. X-Ray diffraction analysis confirmed successful Na-exchange. The textural properties of the bentonite samples were determined using low-temperature the nitrogen physisorption method. Significant differences in the textural properties between the different sodium enriched bentonites were found. Adsorption was investigated with respect to adsorbent dosage, pH, contact time and the initial concentration of Sr2+. The adsorption capacity increased with pH. In the pH range from 4.0?8.5, the amount of adsorbed Sr2+ was almost constant but 2?3 times smaller than at pH ?11. Further experiments were performed at the unadjusted pH since extreme alkaline conditions are environmentally hostile and inapplicable in real systems. The adsorption capacity of all the investigated adsorbents toward Sr2+ was similar under the investigated conditions, regardless of significant differences in the specific surface areas. It was shown and confirmed by the Dubinin?Radushkevich model that the cation exchange mechanism was the dominant mechanism of Sr2+ adsorption. Their developed microporous structures contributed to the Sr2+ adsorption process. The adsorption kinetics obeyed the pseudo-second-order model. The isotherm data were best fitted with the Langmuir isotherm model.


2018 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Sundami Restiana ◽  
Ari Sulistyo Rini

Visualization of crystal structures and simulation of X-ray diffraction patterns of perovskite ceramic was successfully performed by VESTA software programs. The purpose of this research is to obtain the relation of lattice parameter, and composition to the diffraction pattern. The software program produces crystal structure information and a representative X-ray diffraction pattern for the ceramic materials. The program needs several input parameters such as the coordinates of each constituent atom, lattice parameters, and space symmetry. The obtained output of the software program are in the form of diffraction pattern graph and crystal structure data which gives the description of the profile and type (phase) of ceramic material. The results showed that the peak position and intensity of the diffraction pattern are influenced by the arrangement of  the atoms within the unit cell. The addition of impurity atoms such as Sr on the Ba side in BaTiO3 causes the BaTiO3 structure changes from Orthorombic (a≠b≠c) to Tetragonal (a=b≠c) structure. Based on the simulation, it can be predicted that the critical concentration of the change of structure occur at Sr concentration about 0.4.


Sign in / Sign up

Export Citation Format

Share Document