scholarly journals Foamed Geopolymer Composites with the Addition of Glass Wool Waste

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4978
Author(s):  
Barbara Kozub ◽  
Patrycja Bazan ◽  
Rihards Gailitis ◽  
Kinga Korniejenko ◽  
Dariusz Mierzwiński

This study examines foamed geopolymer composites based on fly ash from the Skawina coal-fired power plant in Poland. The paper presents the effect of adding 3% and 5% by weight of glass wool waste on selected properties of foamed geopolymers. The scope of the tests carried out included density measurements, compressive and bending strength tests, measurements of the heat conduction coefficient, and the results of measurements of changes in thermal radiation in samples subjected to a temperature of 800 °C. The obtained results indicate that glass wool waste can be successfully used to lower the density and heat conduction coefficient of foamed geopolymer composites with a fly ash matrix. In addition, the results of changes in thermal radiation in the samples subjected to the temperature of 800 °C showed a positive effect of the addition of glass wool waste. Moreover, the introduction of the addition of glass wool waste made it possible to increase the compressive strength of the examined foamed geopolymers. For the material modified with 3% by weight of mineral wool, the increase in compressive strength was about 10%, and the increase in fibers in the amount of 5% by weight resulted in an increase of 20% concerning the base material. The obtained results seem promising for future applications. Such materials can be used in technical constructions as thermal insulation materials.

2016 ◽  
Vol 697 ◽  
pp. 599-603
Author(s):  
Ya Peng Dai ◽  
Xing Yong Gu ◽  
Wei Xia Dong ◽  
Ting Luo

In our paper, to save energy conservation and environmental protection, and in view of waste fly ash floating bead with excellent properties such as light and refractory, lightweight insulation materials was prepared using fly ash floating beads as the main materials. Firstly, two different fly ash floating bead contents on the properties of the light and refractory material were investigated. Then, on the basis of the optimum fly ash floating bead content, effects of various different particle sizes and firing temperature on the bulk density, compressive strength and the heat conduction coefficients of the samples were studied. The microstructure of the light-weight refractory materials was characterized by XRD and SEM. The heat conduction coefficient (λ') of the samples were also measured by the self-made test instrument. The experimental results showed that the properties of the as-prepared sample using 80% fly ash floating beads was superior to that of 95 % fly ash floating beads. The optimal volume density of 0.60-1.04 g/cm3, compressive strength of 10.6-39.5 MPa and the heat conduction coefficient of 0.183-0.25 °C·g/ min·cm2 were achieved in the presence of 80% fly ash floating beads with 120-160 particle size at 1200°C-1300°C, which has the potential application in lightweight insulation materials.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5548
Author(s):  
Patrycja Bazan ◽  
Barbara Kozub ◽  
Michał Łach ◽  
Kinga Korniejenko

This study investigated the influence of the steel and melamine fibers hybridization on the flexural and compressive strength of a fly ash-based geopolymer. The applied reinforcement reduced the geopolymer brittleness. Currently, there are several types of polymer fibers available on the market. However, the authors did not come across information on the use of melamine fibers in geopolymer composites. Two systems of reinforcement for the composites were investigated in this work. Reinforcement with a single type of fiber and a hybrid system, i.e., two types of fibers. Both systems strengthened the base material. The research results showed the addition of melamine fibers as well as steel fibers increased the compressive and flexural strength in comparison to the plain matrix. In the case of a hybrid system, the achieved results showed a synergistic effect of the introduced fibers, which provided better strength results in relation to composites reinforced with a single type of fiber in the same amount by weight.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Barbara Kozub ◽  
Patrycja Bazan ◽  
Dariusz Mierzwiński ◽  
Kinga Korniejenko

This paper presents the results of research on geopolymer composites based on fly ash with the addition of melamine fibers in amounts of 0.5%, 1% and 2% by weight and, for comparison, without the addition of fibers. The melamine fibers used in the tests retain their melamine resin properties by 100% and are characterized by excellent acoustic and thermal insulation as well as excellent filtration. In addition, these fibers are nonflammable, resistant to chemicals, resistant to UV radiation, characterized by high temperature resistance and, most importantly, do not show thermal-related shrinking, melting and dripping. This paper presents the results of density measurements, compressive and flexural strength as well as the results of the measurement of thermal radiation changes in samples subjected to a temperature of 600 °C. The results indicate that melamine fibers can be used as geopolymer reinforcement. The best result was achieved for 0.5% by weight amount of reinforcement, approximately 53 MPa, compared to 41 MPa for a pure matrix. In the case of flexural strength, the best results were obtained for the samples made of unreinforced geopolymer and samples with the addition of 0.5% by weight of melamine fibers, which were characterized by bending strength values above 9 MPa, amounting to 10.7 MPa and 9.3 MPa, respectively. The thermal radiation measurements and fire-jet test did not confirm the increasing thermal and fire resistance of the composites reinforced by melamine fiber.


2012 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Biljana Angjusheva ◽  
Emilija Fidancevska ◽  
Vojo Jovanov

Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa) and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min). Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al)(Si,Al)2O6] was formed. Ceramics with optimal properties (porosity 2.96?0.5%, bending strength - 47.01?2 MPa, compressive strength - 170 ?5 MPa) was produced at 1100?C using the heating rate of 10?C/min.


2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


2017 ◽  
Vol 744 ◽  
pp. 131-135 ◽  
Author(s):  
Muhammad Zahid ◽  
Nasir Shafiq ◽  
Mohd Fadhil Nuruddin ◽  
Ehsan Nikbakht ◽  
Asif Jalal

This article aims to investigate the compressive strength variation by the addition of metakaolin as a substitute of fly ash in the fly ash based geopolymer mortar. Five, ten and fifteen percent by weight of fly ash was replaced by highly reactive metakaolin. Two type of fly ashes namely, ASTM class F and ASTM class C were used as a base material for the synthesis of geopolymer mortar. Eight molar sodium hydroxide solution mixed with sodium silicate solution was used as alkaline activator. For optimum geopolymerization, mortar was cured at sixty degree Celsius for twenty four hours duration. Results show different behavior of metakaolin replacement on compressive strength for two different types of fly ash based geopolymer mortar. Improvement in compressive strength was seen by addition of metakaolin in ASTM class F fly ash based geopolymer. On the other hand compressive strength was decreased abruptly in fly ash class C based geopolymer up to certain replacement level.


2018 ◽  
Vol 4 (4) ◽  
pp. 702 ◽  
Author(s):  
Armin Naibaho

The purpose of this research is to know the effectiveness of fly ash waste in marine concrete related to the average compressive strength to be used as a substitute for cement. The test is done for concrete base material, namely: coarse aggregate (gravel), fine aggregate (sand), fly ash, cement (PC = Portland Cement), water and additional material (superplasticizer). 10 cylinders were given each treatment with (0 %, 10 %, 20 %, 25 %) percentage of fly ash addition. The samples then soaked for 26 days in seawater. At 28th day, the sample was subjected to a compression test. Based on the results of analysis and discussion, then obtained: (1) The use of 10% fly ash amount will produce the biggest compressive strength  =  65.84 MPa; (2) When compared with the average compressive strength, the sample without using fly ash (0 %) has compressive power 62.02 MPa and 6.16 % increase in average compressive strength on the addition of 10 % fly ash 65.84 MPa, but in addition to 20 % fly ash there was a decrease of 9.13 % (56.36 MPa) and in addition of 25 % fly ash the average compressive strength decrease to 22.49 % (48.07 MPa).


2018 ◽  
Vol 156 ◽  
pp. 05018 ◽  
Author(s):  
Ngo Janne Pauline S. ◽  
Promentilla Michael Angelo B.

The growing environmental and economic concerns have led to the need for more sustainable construction materials. The development of foamed geopolymer combines the benefit of reduced environmental footprint and attractive properties of geopolymer technology with foam concrete’s advantages of being lightweight, insulating and energy-saving. In this study, alkali-treated abaca fiber-reinforced geopolymer composites foamed with H2O2 were developed using fly ash as the geopolymer precursor. The effects of abaca fiber loading, foaming agent dosage, and curing temperature on mechanical strength were evaluated using Box-Behken design of experiment with three points replicated. Volumetric weight of samples ranged from 1966 kg/m3 to 2249 kg/m3. Measured compressive strength and flexural ranged from 19.56 MPa to 36.84 MPa, and 2.41 MPa to 6.25 MPa, respectively. Results suggest enhancement of compressive strength by abaca reinforcement and elevated temperature curing. Results, however, indicate a strong interaction between curing temperature and foaming agent dosage, which observably caused the composite’s compressive strength to decline when simultaneously set at high levels. Foaming agent dosage was the only factor detected to significantly affect flexural strength.


Sign in / Sign up

Export Citation Format

Share Document