scholarly journals Use of Ashes from Lignite Combustion as Fillers in Rubber Mixtures to Reduce VOC Emissions

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4986
Author(s):  
Miroslawa Prochon ◽  
Dariusz Bieliński ◽  
Paulina Stepaniak ◽  
Magdalena Makowicz ◽  
Dominik Pietrzak ◽  
...  

This paper presents the use of ashes from brown coal combustion (BCA) as fillers in rubber mixtures, to reduce the emission of volatile organic compounds. Two types of ash, BCA1 and BCA2, were selected as fillers for styrene–butadiene rubber (SBR). The ashes were produced during the treatment of brown coal at the Bełchatów Power Plant in the years 2017 and 2018. The morphology and chemical composition of the ash were tested. Morphology studies using scanning microscopy showed differences in the grain sizes of the ashes, and EDS analysis showed a difference in their chemical compositions. Vulcanizates with different weight proportions of the individual ashes were produced. Mixtures were made with the addition of 10–30 pts. wt. ashes per 100 g of SBR. The addition of BCA1 ash at 10 and 30 pts. wt. reduced the emission of volatile organic compounds (VOC) while maintaining the good strength properties of the mixtures.

2012 ◽  
Vol 253-255 ◽  
pp. 825-828
Author(s):  
Jing Chen ◽  
Neng Zhu

The major volatile components in two solvent-based paints, two thinners, and four adhesives have been identified by a method involving pre-treatment by solvent dilution, filtration, and gas chromatography-mass spectrometry. The non-volatile components in these wet building materials have been determined by infrared spectroscopy. The results have shown the major volatile organic compounds in one-component polyurethane varnish and alkyd paint thinner to be nonane, decane, undecane, xylene, ethylbenzene and ethyltoluene. The main film-forming matter in cement floor paint has been identified as styrenated acrylic emulsion, with the volatile components being mainly butyl acetate, decane and benzene series. The basic substances in these adhesives were polychloroprene, styrene butadiene carboxylated latex, or polyvinyl acetate emulsion. The primary volatile compounds in two adhesives were methyl acetate, and many branched-chain and normal alkanes, while those in the other two adhesives were toluene and benzene.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ghazala Yaqub ◽  
Almas Hamid ◽  
Nikhat Khan ◽  
Sunaina Ishfaq ◽  
Asha Banzir ◽  
...  

The present study has been undertaken to analyze the total accumulated burden of volatile organic compounds (VOCs) in blood of occupationally exposed workers. The headspace technique combined with gas chromatography with flame ionization detector was used for the quantitative analysis of the different volatile organic compounds (isopropyl alcohol, phenol, benzene, dichloromethane, ethanol, ethyl acetate, and toluene) in 80 blood samples from the workers belonging to different occupations i.e., shoe polish workers, thinner handlers, paint workers, furniture polish workers, petrol station attendants, textile dyeing workers, printing press workers, and dry port workers as biomonitoring is one of the most promising methods for analyzing the individual burden of VOCs. Another purpose of this study was to investigate the correlation between detected concentrations of VOCs and associated health issues reported by the workers of these professions. Results of the study revealed the presence of different VOCs in blood samples of approximately 70 workers out of 80, and statistical analysis proved a strong relationship between the reported work experience, working hours, and diseases and the detected concentrations of respective volatile organic compounds.


Holzforschung ◽  
2004 ◽  
Vol 58 (2) ◽  
pp. 193-198 ◽  
Author(s):  
A. Bruce ◽  
S. Verrall ◽  
C. A. Hackett ◽  
R. E. Wheatley

Abstract This paper describes an experiment to identify volatile organic compounds (VOCs) from a range of three bacteria and one yeast strain that had previously been shown to be inhibitory to selected sapstain fungi. The bacteria and yeast were cultured on two media, malt extract (ME) and tryptone soya (TS) and the VOCs trapped on chromatographic adsorbant before being analysed by Integrated Thermal Desorption—GC-MS. Since sapstain fungi were only inhibited by VOCs produced on the TS media, it was possible to use Principle Component Analysis to highlight the individual VOCs that are most likely to be responsible for the inhibition. A number of ketones together with dimethyl disulphide and dimethyl trisulphide were highlighted. The importance of VOC production by organisms during the biological control of sapstain is discussed.


2008 ◽  
Vol 8 (1) ◽  
pp. 245-284 ◽  
Author(s):  
B. Langford ◽  
B. Davison ◽  
E. Nemitz ◽  
C. N. Hewitt

Abstract. Concentrations and fluxes of six volatile organic compounds (VOC) were measured above the city of Manchester (UK) during the summer of 2006. A proton transfer reaction-mass spectrometer was used for the measurement of concentrations, and fluxes were calculated using both the disjunct and the virtual disjunct eddy covariance techniques. The two flux systems, which operated in alternate half hours, showed reasonable agreement, with R2 values ranging between 0.2 and 0.8 for the individual analytes. On average, fluxes measured in the disjunct mode were lower than those measured in the virtual mode by approximately 19%, of which at least 8% can be attributed to the differing measurement frequencies of the two systems and the subsequent attenuation of high frequency flux contributions. Observed fluxes are thought to be largely controlled by anthropogenic sources, with vehicle emissions the major contributor. However both evaporative and biogenic emissions may account for a fraction of the isoprene present. Fluxes of the oxygenated compounds were highest on average, ranging between 60–89 μg m−2 h−1, whereas the fluxes of aromatic compounds were lower, between 19–42 μg m−2 h−1. The observed fluxes of benzene were up-scaled to give a city wide emission estimate which was found to be significantly lower than that of the National Atmospheric Emissions Inventory (NAEI).


2021 ◽  
Vol 11 (16) ◽  
pp. 7312
Author(s):  
Bruno Tirillini ◽  
Filippo Maggi

Focusing on volatile organic compounds (VOC) of Ocimum basilicum, this study aims to determine the chemical composition of VOC in secretory trichomes and compare it with that of essential oil obtained by hydrodistillation of leaves. The technique of extracting the content of glandular trichomes refers to the microneedle shuttle analysis. Hydrodistillation of fresh leaves was done with a Clevenger distiller (EO). The chemical compositions were determined by GC/FID and GC/MS. The head of the capitate trichomes does not contain volatile compounds. Fifty volatile compounds were detected in the EO, and twenty-four volatile compounds were detected in the VOC; the main components were eugenol (from 15.47% ± 1.05% to 41.89% ± 2.83%) and linalool (from 32.05% ± 2.57% to 28.99% ± 2.32%), respectively. During the distillation of the basil leaves 26 artifacts are formed. The composition of the essential oil of O. basilicum therefore depends not only on the plant but also on the method used to obtain it.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Attapon Cheepsattayakorn ◽  
Ruangrong Cheepsattayakorn

Today, exhaled nitric oxide has been studied the most, and most researches have now focusd on asthma. More than a thousand different volatile organic compounds have been observed in low concentrations in normal human breath. Alkanes and methylalkanes, the majority of breath volatile organic compounds, have been increasingly used by physicians as a novel method to diagnose many diseases without discomforts of invasive procedures. None of the individual exhaled volatile organic compound alone is specific for disease. Exhaled breath analysis techniques may be available to diagnose and monitor the diseases in home setting when their sensitivity and specificity are improved in the future.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1257 ◽  
Author(s):  
Chaohao Liu ◽  
Mingming Guo ◽  
Xiaobo Zhai ◽  
Xin Ye ◽  
Liqun Zhang

Rubber used in tire is usually strengthened by nanofiller, and the most popular nanofiller for tire tread rubber is nano silica, which can not only strengthen rubber but also lower the tire rolling resistance to reduce fuel consumption. However, silica particles are difficult to disperse in the rubber matrix because of the abundant silicon hydroxyl on their surface. Silane coupling agents are always used to modify silica and improve their dispersion, but a large number of volatile organic compounds (VOCs) are emitted during the manufacturing of the nanosilica/rubber composites because of the condensation reaction between silane coupling agents and silicon hydroxyl on the surface of silica. Those VOCs will do great harm to the environment and the workers’ health. In this work, epoxidized solution polymerized styrene-butadiene rubbers (ESSBR) with different epoxy degrees were prepared and used as macromolecular coupling agents aimed at fully eliminating VOCs. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) analyses verified that the different ESSBRs were successfully synthesized from solution polymerized styrene-butadiene rubbers (SSBR). With the help of the reaction between epoxy groups and silicon hydroxyl without any VOC emission, nanosilica can be well dispersed in the rubber matrix when SSBR partially replaced by ESSBR which was proved by Payne effect and TEM analysis. Dynamic and static mechanical testing demonstrated that silica/ESSBR/SSBR/BR nanocomposites have better performance and no VOC emission compared with Bis-(γ-triethoxysilylpropyl)-disulfide (TESPD) modified silica/rubber nanocomposites. ESSBR is very hopeful to replace traditional coupling agent TESPD to get high properties silica/rubber nanocomposites with no VOCs emission.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 297 ◽  
Author(s):  
Longjiao Shen ◽  
Ping Xiang ◽  
Shengwen Liang ◽  
Wentai Chen ◽  
Ming Wang ◽  
...  

Industrial emission is an important source of ambient volatile organic compounds (VOCs) in Wuhan City, Hubei Province, China. We collected 53 VOC samples from petrochemical, surface coating, electronic manufacturing, and gasoline evaporation using stainless canisters to develop localized source profiles. Concentrations of 86 VOC species, including hydrocarbons, halocarbons, and oxygenated VOCs, were quantified by a gas chromatography–flame ionization detection/mass spectrometry system. Alkanes were the major constituents observed in the source profile from the petrochemical industry. Aromatics (79.5~81.4%) were the largest group in auto-painting factories, while oxygenated VOCs (82.0%) and heavy alkanes (68.7%) were dominant in gravure printing and offset printing factories, respectively. Acetone was the largest contributor and the most frequently monitored species in printed circuit board (PCB) manufacturing, while VOC species emitted from integrated chip (IC) were characterized by high contents of isopropanol (56.4–98.3%) and acetone (30.8%). Chemical compositions from vapor of gasoline 92#, 93#, and 98# were almost identical. Alkanes were the dominant VOC group, with i-pentane being the most abundant species (31.4–37.7%), followed by n-butane and n-pentane. However, high loadings of heavier alkanes were observed in the profile of diesel evaporation.


Sign in / Sign up

Export Citation Format

Share Document