scholarly journals The Characterization of Scaffolds Based on Dialdehyde Chitosan/Hyaluronic Acid

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4993
Author(s):  
Sylwia Grabska-Zielińska ◽  
Adrianna Sosik ◽  
Anna Małkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Kerstin Steinbrink ◽  
...  

In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.

2021 ◽  
Vol 27 (6) ◽  
pp. 1343-1350
Author(s):  
Kyung-Min Kim ◽  
Ha-Yeon Kim ◽  
So-Yoon Cha ◽  
Ye-Hyang Kim ◽  
Ji-Won Song ◽  
...  

Several previous studies have investigated the skin aging prevention effects of ceramide, hyaluronic acid, and natural or fermented plant materials. Recently, oral administration and dermal application of probiotics or probiotic lysates have shown antiaging effects. The purpose of this study is to optimize the preparation of probiotic lysates with a high concentration of nucleotides and to confirm the effects of probiotic lysates on the skin. Probiotic lysates were prepared by heating at 121°C for various periods with adding of sodium hyaluronic acid. Probiotic lysates of Bifidobacterium longum HDB7072, Lactobacillus paracasei HDB1196, and Lactobacillus acidophilus HDB1014 were applied to normal human epidermal keratinocytes (NHEKs), fibroblast cells, and B16F1 cells, respectively. Cell viability, antioxidant effects, and mRNA expression were evaluated by using MTT assays, DPPH assays, and qRT-PCR. Probiotic lysates prepared by heating the culture medium at 121°C for 2 h with 0.5% sodium hyaluronic acid showed the highest nucleotide concentration. In the three tested skin cells, the cell viability of filtered lysates was similar or higher to that of unfiltered lysates. HDB7072 lysates increased filaggrin expression in NHEKs. HDB1196 lysates showed DPPH radical-scavenging and antiwrinkle effects through the downregulation of matrix metalloproteinase-1 and upregulation of collagen type 1 in fibroblasts. HDB1014 lysates had antioxidant and antimelanogenic effects in B16F1 cells. Cell wall-removed probiotic lysates could be used as novel ingredients to improve skin aging and skin barrier issues.


Cosmetics ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 66 ◽  
Author(s):  
Hélène Ozanne ◽  
Hechmi Toumi ◽  
Benoît Roubinet ◽  
Ludovic Landemarre ◽  
Eric Lespessailles ◽  
...  

Laminarin, a β-(1,3)-glucan from the seaweed Laminaria digitata, is a polysaccharide which provides anti-inflammatory and anti-oxidative properties. Its influence on both human dermal fibroblasts adult (HDFa) and normal human epidermal keratinocytes (NHEK) has not been established yet. Herein, laminarin effects were examined on skin cells’ mitochondrial and antioxidant activities. Cytokines, hyaluronic acid, and procollagen type I secretions and interaction mechanisms were explored after a maximum of 72 h treatment with laminarin. Our results demonstrated a decrease in mitochondrial activities with 72 h treatment with laminarin from 500 µg.mL−1 for NHEK cells and from 100 µg.mL−1 for HDFa cells without cytotoxicity. No variation of hyaluronic acid or type I procollagen was observed for all laminarin concentrations, while an antioxidant effect was found against reactive oxygen species (ROS) from 1 µg.mL−1 for HDFa cells in both H2O2 and UVA radiation conditions, and from 10 µg.mL−1 and 1 µg.mL−1 for NHEK cells in both H2O2 and UVA radiation conditions, respectively. Laminarin treatment modulated both cells surface glycosylation and cytokine secretions of skin cells. Overall, our data suggest a positive effect of β-(1,3)-glucan on skin cells on oxidative stress and inflammation induced by environmental factors. Of note, these effects are through the modulation of glycan and receptors interactions at the skin cells surface.


2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


2005 ◽  
Vol 284-286 ◽  
pp. 431-434 ◽  
Author(s):  
U. Lohbauer ◽  
G. Jell ◽  
Priya Saravanapavan ◽  
Julian R. Jones ◽  
Larry L. Hench

Bioactive gel-glasses, such as the silver-doped Ag-S70C30 glass, can be used to modify the inflammatory response in a local body compartment such as in acne lesions and in nonhealing dermal wounds. In this study, the cytotoxicity of soluble silver, calcium and silica ions on human epidermal keratinocytes was investigated by measurements of mitochondrial activity (MTT assay) and neutral red dye uptake (NR assay). Ag-S70C30 extracts were prepared by soaking glass powder in complete culture medium at concentrations of 1 mg/ml and 2 mg/ml (mg of glass powder per ml of culture medium). Silver concentrations for both concentrations of approximately 1 ppm were detected by inductive coupled plasma analysis (ICP). No negative effect on the cell viability was measured for an initial gel-glass concentration of 1 mg/ml and for the two shortest extraction times at a concentration of 2 mg/ml. Based on the results from MTT/ NR assays, a pH rise of approximately one unit had no negative effect on the NHEK-A cell viability. This preliminary study on keratinocyte viability merits future investigations on silver bioglass as a novel antimicrobial wound healing agent.


1999 ◽  
Vol 112 (12) ◽  
pp. 1843-1853 ◽  
Author(s):  
N. Maas-Szabowski ◽  
A. Shimotoyodome ◽  
N.E. Fusenig

Epithelial-mesenchymal interactions play an important role in regulating tissue homeostasis and repair. For skin, the regulatory mechanisms of epidermal-dermal interactions were studied in cocultures of normal human epidermal keratinocytes (NEK) and dermal fibroblasts (HDF) rendered postmitotic by alpha-irradiation (HDFi). The expression kinetics of different cytokines and their receptors with presumed signalling function in skin were determined at the RNA and protein level in mono- and cocultured NEK and HDFi. In cocultured HDFi, mRNA and protein synthesis of keratinocyte growth factor (KGF) (FGF-7) was strongly enhanced, whereas in cocultured keratinocytes interleukin (IL)-1alpha and -1beta mRNA expression increased compared to monocultures. Thus we postulated that IL-1, which had no effect on keratinocyte proliferation, induced in fibroblasts the expression of factors stimulating keratinocyte proliferation, such as KGF. The functional significance of this reciprocal modulation was substantiated by blocking experiments. Both IL-1alpha and -1beta-neutralizing antibodies and IL-1 receptor antagonist significantly reduced keratinocyte proliferation supposedly through abrogation of KGF production, because IL-1 antibodies blocked the induced KGF production. These data indicate a regulation of keratinocyte growth by a double paracrine mechanism through release of IL-1 which induces KGF in cocultured fibroblasts. Thus IL-1, in addition to its proinflammatory function in skin, may play an essential role in regulating tissue homeostasis.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Maria del R. Ramos-Jerz ◽  
Socorro Villanueva ◽  
Gerold Jerz ◽  
Peter Winterhalter ◽  
Alexandra M. Deters

Methanolic avocado (Persea americanaMill., Lauraceae) seed extracts were separated by preparative HSCCC. Partition and HSCCC fractions were principally characterized by LC-ESI-MS/MS analysis. Theirin vitroinfluence was investigated on proliferation, differentiation, cell viability, and gene expression on HaCaT and normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF). The methanol-water partition (M) from avocado seeds and HSCCC fraction 3 (M.3) were mostly composed of chlorogenic acid and its isomers. Both reduced NHDF but enhanced HaCaT keratinocytes proliferation. HSCCC fractionM.2composed of quinic acid among chlorogenic acid and its isomers inhibited proliferation and directly induced differentiation of keratinocytes as observed on gene and protein level. Furthermore,M.2increased NHDF proliferation via upregulation of growth factor receptors. Salidrosides and ABA derivatives present in HSCCC fractionM.6increased NHDF and keratinocyte proliferation that resulted in differentiation. The residual solvent fractionM.7contained among low concentrations of ABA derivatives high amounts of proanthocyanidins B1 and B2 as well as an A-type trimer and stimulated proliferation of normal cells and inhibited the proliferation of immortalized HaCaT keratinocytes.


2007 ◽  
Vol 26 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Leshuai W. Zhang ◽  
Liling Zeng ◽  
Andrew R. Barron ◽  
Nancy A. Monteiro-Riviere

Carbon nanotube–based nanovectors, especially functionalized nanotubes, have shown potential for therapeutic drug delivery. 6-Aminohexanoic acid–derivatized single-wall carbon nanotubes (AHA-SWNTs) are soluble in aqueous stock solutions over a wide range of physiologically relevant conditions; however, their interactions with cells and their biological compatibility has not been explored. Human epidermal keratinocytes (HEKs) were dosed with AHA-SWNTs ranging in concentration from 0.00000005 to 0.05 mg/ml. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability decreased significantly ( p < .05) from 0.00005 to 0.05 mg/ml after 24 h. The proinflammatory mediators of inflammation cytokines interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)- α, IL-10, and IL-1 β were also assessed. Cytokine analysis did not show a significant increase in IL-6 and IL-8 in the medium containing 0.000005 mg/ml of AHA-SWNTs from 1 to 48 h. IL-6 increased in cells treated with 0.05 mg/ml of AHA-SWNTs from 1 to 48 h, whereas IL-8 showed a significant increase at 24 and 48 h. No significant difference ( p < .05) was noted with TNF- α, IL-10, and IL-1 β expression at any time point. Transmission electron microscopy of HEKs treated with 0.05 mg/ml AHA-SWNTs for 24 h depicted AHA-SWNTs localized within intracytoplasmic vacuoles in HEKs. Treatment with the surfactant 1% Pluronic F127 caused dispersion of the AHA-SWNT aggregates in the culture medium and less toxicity. These data showed that the lower concentration of 0.000005 mg/ml of AHA-SWNTs maintains cell viability and induces a mild cytotoxicity, but 0.05 mg/ml of AHA-SWNTs demonstrated an irritation response by the increase in IL-8.


Sign in / Sign up

Export Citation Format

Share Document