scholarly journals Image Processing of Mg-Al-Sn Alloy Microstructures for Determining Phase Ratios and Grain Size and Correction with Manual Measurement

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5095
Author(s):  
Ali Ercetin ◽  
Fatih Akkoyun ◽  
Ercan Şimşir ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin ◽  
...  

The study of microstructures for the accurate control of material properties is of industrial relevance. Identification and characterization of microstructural properties by manual measurement are often slow, labour intensive, and have a lack of repeatability. In the present work, the intermetallic phase ratio and grain size in the microstructure of known Mg-Sn-Al alloys were measured by computer vision (CV) technology. New Mg (Magnesium) alloys with different alloying element contents were selected as the work materials. Mg alloys (Mg-Al-Sn) were produced using the hot-pressing powder metallurgy technique. The alloys were sintered at 620 °C under 50 MPa pressure in an argon gas atmosphere. Scanning electron microscopy (SEM) images were taken for all the fabricated alloys (three alloys: Mg-7Al-5Sn, Mg-8Al-5Sn, Mg-9Al-5Sn). From the SEM images, the grain size was counted manually and automatically with the application of CV technology. The obtained results were evaluated by correcting automated grain counting procedures with manual measurements. The accuracy of the automated counting technique for determining the grain count exceeded 92% compared to the manual counting procedure. In addition, ASTM (American Society for Testing and Materials) grain sizes were accurately calculated (approximately 99% accuracy) according to the determined grain counts in the SEM images. Hence, a successful approach was proposed by calculating the ASTM grain sizes of each alloy with respect to manual and automated counting methods. The intermetallic phases (Mg17Al12 and Mg2Sn) were also detected by theoretical calculations and automated measurements. The accuracy of automated measurements for Mg17Al12 and Mg2Sn intermetallic phases were over 95% and 97%, respectively. The proposed automatic image processing technique can be used as a tool to track and analyse the grain and intermetallic phases of the microstructure of other alloys such as AZ31 and AZ91 magnesium alloys, aluminium, titanium, and Co alloys.

2021 ◽  
Author(s):  
FATIH AKKOYUN ◽  
Ali Ercetin ◽  
Kubilay Aslantas

Abstract In this study, the burr and slot widths formed after micro-milling process are investigated using a rapid and accurate image processing method. The measurements are obtained by processing the images and results were compared with a manual measurement method. In the cutting experiment stage, Inconel 718 alloy was chosen as the workpiece and cutting tools with various specific properties were used. The images of the burr and slots were captured using scanning electron microscope (SEM). Different tool geometries and cutting parameters were considered for choosing the SEM images. Captured images were processed with a computer vision software which was written in C + + programming language and open-sourced computer library (Open CV). The demonstrated approach was successfully measured the slot and burr widths in plain and complex conditions where slot and burr are nested. According to the close findings of manual and automated measurements, it was observed that burr widths increased especially at the down milling sides and slot widths decreased due to the increased cutting length. Specific tool properties such as number of cutting edge, helix angle and cutting length affected the slot and burr widths. It was determined that there is a good correlation between automated and manual measurements of slot and burr widths. The accuracy of the proposed method is above 91%, 98%, and 99% for up milling, down milling, and slot measurements, respectively.


2011 ◽  
Vol 690 ◽  
pp. 214-217 ◽  
Author(s):  
Andrzej Kiełbus ◽  
Tomasz Rzychoń

In the present article, the phase identification of four magnesium alloys: Mg-9wt%Al, Mg-8wt%Al-2wt%Ca-0.5wt%Sr, Mg-5wt%Y-4wt%RE and Mg-3wt%Nd-1wt%Gd were studied. The results showed that Mg-9wt%Al alloy contains only the Mg17Al12 intermetallic phase in α-Mg matrix. As-cast microstructure of Mg-8wt%Al-2wt%Ca-0.5wt%Sr alloy consist of α-Mg matrix with (Al,Mg)2Ca and (Al,Mg)4Sr phases. The Mg-5wt%Y-4wt%RE alloy showed several phases. This alloy was characterized by a solid solution structure α-Mg with eutectic α-Mg + Mg14Y2Nd on grain boundaries. The precipitates of MgY, Mg2Y, Mg24Y5 phases have been also observed. The Mg-3wt%Nd-1wt%Gd alloy composed mainly of a solid solution structure α-Mg with eutectic α-Mg + Mg3(Nd,Gd) on the grain boundaries. The regular precipitates of MgGd3 phase have been also observed.


2015 ◽  
Vol 651-653 ◽  
pp. 796-801 ◽  
Author(s):  
Andreas Hütter ◽  
Wilfried Huemer ◽  
Claudia Ramskogler ◽  
Fernando Warchomicka ◽  
Aymen Lachehab ◽  
...  

In recent years an interest in magnesium and magnesium alloys not only for the automotive industry but also for medical applications was increasing due to the low density and good specific strength. Magnesium alloys show good castability but lower ductility and strength than wrought materials. For this reason, refinement of grains and homogenous distribution of intermetallic phases are needed to improve formability and mechanical properties. On the other hand, the degradation of the material by corrosion is influenced by the grain size and phase distribution. This work investigates the microstructure evolution of pure Mg and magnesium alloy AZ91 by friction stir processing (FSP) technique. FSP experiments are carried out by constant force, optimizing the rotation and feed rate to obtain a homogenous microstructure, free of defects stir zone, good surface finishing and stable conditions during the process. The results show that the grain size is affected by the spindle speed. Increasing the number of passes reduces also the size of the grains and the intermetallic phases in the AZ91 alloy. The overlapping of passes between overlapping ratio 0.5 to 1 determines an uniform depth of the stir zone over a larger surface area.Hardness measurements are performed to evaluate the influence of FSP parameters on the mechanical properties. The degradation rate of the studied FSP Mg alloys is determined by hydrogen evolution in corrosion immersion tests, which depend strongly on the phase distribution and grain size.


2007 ◽  
Vol 546-549 ◽  
pp. 233-236 ◽  
Author(s):  
Ali Arslan Kaya ◽  
Ozgur Duygulu ◽  
Onuralp Yucel ◽  
Dan Eliezer

In this study, AZ31 in form of sheet, plate and extruded rod and AZ61 wire with different initial grain sizes were used to investigate the effect of initial grain size on recrystallization behavior and the formation of fine recrystallized grain (the so-called necklace) structure. Nucleation and growth of recrystallized grains along grain boundaries has been examined. In order to observe the effect of initial grain size and deformation on static recrsytallization and necklace formation, the specimens were annealed at 100-250°C for 10min--2hr. Specimens are also stretched to a total strain of 10, 20 and 40% at 300°C at an initial cross head speed of 1x10-3 s-1 for dynamic recrystallization studies. The results suggest that there exists a grain size limit, below which a necklace structure is not observed.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Author(s):  
Yashpal Jitarwal ◽  
Tabrej Ahamad Khan ◽  
Pawan Mangal

In earlier times fruits were sorted manually and it was very time consuming and laborious task. Human sorted the fruits of the basis of shape, size and color. Time taken by human to sort the fruits is very large therefore to reduce the time and to increase the accuracy, an automatic classification of fruits comes into existence.To improve this human inspection and reduce time required for fruit sorting an advance technique is developed that accepts information about fruits from their images, and is called as Image Processing Technique.


Sign in / Sign up

Export Citation Format

Share Document