scholarly journals Status and Prospects of Cubic Silicon Carbide Power Electronics Device Technology

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5831
Author(s):  
Fan Li ◽  
Fabrizio Roccaforte ◽  
Giuseppe Greco ◽  
Patrick Fiorenza ◽  
Francesco La Via ◽  
...  

Wide bandgap (WBG) semiconductors are becoming more widely accepted for use in power electronics due to their superior electrical energy efficiencies and improved power densities. Although WBG cubic silicon carbide (3C-SiC) displays a modest bandgap compared to its commercial counterparts (4H-silicon carbide and gallium nitride), this material has excellent attributes as the WBG semiconductor of choice for low-resistance, reliable diode and MOS devices. At present the material remains firmly in the research domain due to numerous technological impediments that hamper its widespread adoption. The most obvious obstacle is defect-free 3C-SiC; presently, 3C-SiC bulk and heteroepitaxial (on-silicon) display high defect densities such as stacking faults and antiphase boundaries. Moreover, heteroepitaxy 3C-SiC-on-silicon means low temperature processing budgets are imposed upon the system (max. temperature limited to ~1400 °C) limiting selective doping realisation. This paper will give a brief overview of some of the scientific aspects associated with 3C-SiC processing technology in addition to focussing on the latest state of the art results. A particular focus will be placed upon key process steps such as Schottky and ohmic contacts, ion implantation and MOS processing including reliability. Finally, the paper will discuss some device prototypes (diodes and MOSFET) and draw conclusions around the prospects for 3C-SiC devices based upon the processing technology presented.

2019 ◽  
Vol 28 (01n02) ◽  
pp. 1940010
Author(s):  
Dong Ji ◽  
Srabanti Chowdhury

Silicon technology enabled most of the electronics we witness today, including power electronics. However, wide bandgap semiconductors are capable of addressing high-power electronics more efficiently compared to Silicon, where higher power density is a key driver. Among the wide bandgap semiconductors, silicon carbide (SiC) and gallium nitride (GaN) are in the forefront in power electronics. GaN is promising in its vertical device topology. From CAVETs to MOSFETs, GaN has addressed voltage requirements over a wide range. Our current research in GaN offers a promising view of GaN that forms the theme of this article. CAVETs and OGFETs (a type of MOSFET) in GaN are picked to sketch the key achievements made in GaN vertical device over the last decade.


1997 ◽  
Vol 483 ◽  
Author(s):  
C. E. Weitzel ◽  
K. E. Moore

AbstractImpressive RF power performance has been demonstrated by three radically different wide bandgap semiconductor power devices, SiC MESFET's, SiC SIT's, and AlGaN HFET's. AlGaN HFET's have achieved the highest fmax 97 GHz. 4H-SiC MESFET's have achieved the highest power densities, 3.3 W/mm at 850 MHz (CW) and at 10 GHz (pulsed). 4H-SiC SIT's have achieved the highest output power, 450 W (pulsed) at 600 MHz and 38 W (pulsed) at 3 GHz. Moreover a one kilowatt, 600 MHz SiC power module containing four multi-cell SIT's with a total source periphery of 94.5 cm has been demonstrated.


2016 ◽  
Vol 858 ◽  
pp. 1070-1073 ◽  
Author(s):  
Akin Akturk ◽  
Neil Goldsman ◽  
Ahayi Ahyi ◽  
Sarit Dhar ◽  
Brendan Cusack ◽  
...  

Due to the wide band-gap and high thermal conductivity of the 4H polytype of silicon carbide (SiC) as well as the maturity of this polytype’s fabrication processes, 4H-SiC offers an extremely attractive wide bandgap semiconductor technology for harsh environment applications spanning a variety of markets. To this end, 4H-SiC power electronics is gradually emerging as the technology of choice for next-generation power electronics; however, relatively limited progress has been made with regards to silicon carbide integrated circuits (ICs). We address this problem by developing fabrication and design methods for the SiC IC components themselves, as well as complementary SPICE type compact models for these components, and thereby facilitate the development of future SiC ICs and Process Design Kits (PDKs).


2019 ◽  
Vol 93 ◽  
pp. 295-298 ◽  
Author(s):  
M. Spera ◽  
G. Greco ◽  
R. Lo Nigro ◽  
C. Bongiorno ◽  
F. Giannazzo ◽  
...  

1995 ◽  
Vol 403 ◽  
Author(s):  
T. S. Hayes ◽  
F. T. Ray ◽  
K. P. Trumble ◽  
E. P. Kvam

AbstractA refined thernodynamic analysis of the reaction between molen Al and SiC is presented. The calculations indicate much higher Si concentrations for saturation with respect to AkC 3 formation than previously reported. Preliminary microstructural studies confirm the formation of interfacial A14C3 for pure Al thin films on SiC reacted at 9000C. The implications of the calculations and experimental observations for the production of ohmic contacts to p-type SiC are discussed.


2021 ◽  
Vol 103 (19) ◽  
Author(s):  
Peter A. Schultz ◽  
Renee M. Van Ginhoven ◽  
Arthur H. Edwards

2005 ◽  
Vol 900 ◽  
Author(s):  
Claudiu I. Muntele ◽  
Sergey Sarkisov ◽  
Iulia Muntele ◽  
Daryush Ila

ABSTRACTSilicon carbide is a promising wide-bandgap semiconductor intended for use in fabrication of high temperature, high power, and fast switching microelectronics components running without cooling. For hydrogen sensing applications, silicon carbide is generally used in conjunction with either palladium or platinum, both of them being good catalysts for hydrogen. Here we are reporting on the temperature-dependent surface morphology and depth profile modifications of Au, Ti, and W electrical contacts deposited on silicon carbide substrates implanted with 20 keV Pd ions.


Sign in / Sign up

Export Citation Format

Share Document