scholarly journals Impact of A-Site Cation Deficiency on Charge Transport in La0.5−xSr0.5FeO3−d

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5990
Author(s):  
Oleg V. Merkulov ◽  
Ruslan R. Samigullin ◽  
Alexey A. Markov ◽  
Mikhail V. Patrakeev

The electrical conductivity of La0.5−xSr0.5FeO3−δ, investigated as a function of the nominal cation deficiency in the A-sublattice, x, varying from 0 to 0.02, has demonstrated a nonlinear dependence. An increase in the x value from 0 to 0.01 resulted in a considerable increase in electrical conductivity, which was shown to be attributed mainly to an increase in the mobility of the charge carriers. A combined analysis of the defect equilibrium and the charge transport in La0.5−xSr0.5FeO3−δ revealed the increase in the mobility of oxygen ions, electrons, and holes by factors of ~1.5, 1.3, and 1.7, respectively. The observed effect is assumed to be conditioned by a variation in the oxide structure under the action of the cationic vacancy formation. It was found that the cation deficiency limit in La0.5−xSr0.5FeO3−δ did not exceed 0.01. A small overstep of this limit was shown to result in the formation of (Sr,La)Fe12O19 impurity, which even in undetectable amounts reduced the conductivity of the material. The presence of (Sr,La)Fe12O19 impurity was revealed by X-ray diffraction on the ceramic surface after heat treatment at 1300 °C. It is most likely that the formation of traces of the liquid phase under these conditions is responsible for the impurity migration to the ceramic surface. The introduction of a cation deficiency of 0.01 into the A-sublattice of La0.5−xSr0.5FeO3−δ can be recommended as an effective means to enhance both the oxygen ion and the electron conductivity and improve ceramic sinterability.

2021 ◽  
Vol 59 (10) ◽  
pp. 736-743
Author(s):  
Hee-Jae Ahn ◽  
Il-Ho Kim

In this study, tetrahedrite compounds doped with Sn were prepared by mechanical alloying and hot pressing, and their charge transport and thermoelectric properties were analyzed. X-ray diffraction analysis revealed that both the synthetic powders and sintered bodies were synthesized as a single tetrahedrite phase without secondary phases. Densely sintered specimens were obtained with relatively high densities of 99.5%-100.0% of the theoretical density, and the component elements were distributed uniformly. Sn was successfully substituted at the Sb site, and the lattice constant increased from 1.0348 to 1.0364 nm. Positive signs of the Hall and Seebeck coefficients confirmed that the Sn-doped tetrahedrites were p-type semiconductors. The carrier concentration decreased from 1.28 × 1019 to 1.57 × 1018 cm-3 as the Sn content decreased because excess electrons were supplied by doping with Sn4+ at the Sb3+ site of the tetrahedrite. The Seebeck coefficient increased with increasing Sn content, and Cu12Sb3.6Sn0.4S13 exhibited maximum values of 238-270 µVK-1 at temperatures of 323-723 K. However, the electrical conductivity decreased as the amount of Sn doping increased. Thus, Cu12Sb3.9Sn0.1S13 exhibited the highest electrical conductivity of (2.24-2.40) × 104 Sm-1 at temperatures of 323-723 K. A maximum power factor of 0.73 mWm-1K-2 was achieved at 723 K for Cu12Sb3.9Sn0.1S13. Sn substitution reduced both the electronic and lattice thermal conductivities. The lowest thermal conductivity of 0.49-0.60 Wm-1K-1 was obtained at temperatures of 323-723 K for Cu12Sb3.6Sn0.4S13, where the lattice thermal conductivity was dominant at 0.49-0.57 Wm-1K-1. As a result, a maximum dimensionless figure of merit of 0.66 was achieved at 723 K for Cu12Sb3.9Sn0.1S13.


2021 ◽  
Vol 59 (10) ◽  
pp. 724-731
Author(s):  
Hee-Jae Ahn ◽  
Il-Ho Kim

In this study, tetrahedrite compounds doped with Sn were prepared by mechanical alloying and hot pressing, and their charge transport and thermoelectric properties were analyzed. X-ray diffraction analysis revealed that both the synthetic powders and sintered bodies were synthesized as a single tetrahedrite phase without secondary phases. Densely sintered specimens were obtained with relatively high densities of 99.5%-100.0% of the theoretical density, and the component elements were distributed uniformly. Sn was successfully substituted at the Sb site, and the lattice constant increased from 1.0348 to 1.0364 nm. Positive signs of the Hall and Seebeck coefficients confirmed that the Sn-doped tetrahedrites were p-type semiconductors. The carrier concentration decreased from 1.28 × 1019 to 1.57 × 1018 cm-3 as the Sn content decreased because excess electrons were supplied by doping with Sn4+ at the Sb3+ site of the tetrahedrite. The Seebeck coefficient increased with increasing Sn content, and Cu12Sb3.6Sn0.4S13 exhibited maximum values of 238-270 µVK-1 at temperatures of 323-723 K. However, the electrical conductivity decreased as the amount of Sn doping increased. Thus, Cu12Sb3.9Sn0.1S13 exhibited the highest electrical conductivity of (2.24-2.40) × 104 Sm-1 at temperatures of 323-723 K. A maximum power factor of 0.73 mWm-1K-2 was achieved at 723 K for Cu12Sb3.9Sn0.1S13. Sn substitution reduced both the electronic and lattice thermal conductivities. The lowest thermal conductivity of 0.49-0.60 Wm-1K-1 was obtained at temperatures of 323-723 K for Cu12Sb3.6Sn0.4S13, where the lattice thermal conductivity was dominant at 0.49-0.57 Wm-1K-1. As a result, a maximum dimensionless figure of merit of 0.66 was achieved at 723 K for Cu12Sb3.9Sn0.1S13.


2012 ◽  
Vol 527 ◽  
pp. 154-158 ◽  
Author(s):  
Kristaps Rubenis ◽  
Karlis Kundzins ◽  
Janis Locs ◽  
Jurijs Ozolins

Dense TiO2 (rutile) ceramic samples were prepared by sintering compacts of titanium dioxide anatase powder at 1500 °C for 5h. Sintered samples were polished and annealed in vacuum at 1000 °C for 1h. Structural properties of the samples were studied by X-ray diffraction, polarized light and scanning electron microscopy. The surface topography and local electrical conductivity of the samples were investigated by atomic force microscopy technique under atmospheric conditions. Enhanced electrical conductivity was observed at grain boundaries while the polished, vacuum annealed grains surface showed non-homogeneous conductivity.


1996 ◽  
Vol 451 ◽  
Author(s):  
D. Lincot ◽  
M. J. Furlong ◽  
M. Froment ◽  
R. Cortes ◽  
M. C. Bernard

ABSTRACTChalcogenide semiconductors have been deposited epitaxially from aqueous solutions either chemically or electrochemically at growth rates of up to 0.7 μmhr−1. After recalling the basic principles of these deposition processes, results are presented concerning chemically deposited CdS on InP, GaP and CuInSe2 substrates, electrodeposited CdTe on InP, and CdSAnP heterostructures. Characterisation of these structures by RHEED, TEM, HRTEM, and glazing angle X ray diffraction allows to analyse the effects of substrate orientation, polarity, lattice match plus the influence of temperature on epitaxial growth. These results are discussed in terms of self organisation and a site selective growth mechanisms due to the free enegy of formation of each compound.


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1023 ◽  
Author(s):  
Ashish Chhaganlal Gandhi ◽  
Chia-Liang Cheng ◽  
Sheng Yun Wu

We report the synthesis of room temperature (RT) stabilized γ–Bi2O3 nanoparticles (NPs) at the expense of metallic Bi NPs through annealing in an ambient atmosphere. RT stability of the metastable γ–Bi2O3 NPs is confirmed using synchrotron radiation powder X-ray diffraction and Raman spectroscopy. γ–Bi2O3 NPs exhibited a strong red-band emission peaking at ~701 nm, covering 81% integrated intensity of photoluminescence spectra. Our findings suggest that the RT stabilization and enhanced red-band emission of γ‒Bi2O3 is mediated by excess oxygen ion vacancies generated at the octahedral O(2) sites during the annealing process.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


1994 ◽  
Vol 359 ◽  
Author(s):  
Jun Chen ◽  
Haiyan Zhang ◽  
Baoqiong Chen ◽  
Shaoqi Peng ◽  
Ning Ke ◽  
...  

ABSTRACTWe report here the results of our study on the properties of iodine-doped C60 thin films by IR and optical absorption, X-ray diffraction, and electrical conductivity measurements. The results show that there is no apparent structural change in the iodine-doped samples at room temperature in comparison with that of the undoped films. However, in the electrical conductivity measurements, an increase of more that one order of magnitude in the room temperature conductivity has been observed in the iodine-doped samples. In addition, while the conductivity of the undoped films shows thermally activated temperature dependence, the conductivity of the iodine-doped films was found to be constant over a fairly wide temperature range (from 20°C to 70°C) exhibiting a metallic feature.


2016 ◽  
Vol 847 ◽  
pp. 161-165 ◽  
Author(s):  
Ju Yi Wang ◽  
Xiao Ya Li ◽  
Ye Feng Bao

In this study, Mn doped Cu12-xMnxSb4S13(x=0, 0.5, 1.0, and 2.0) tetrahedrite samples were prepared by melting and annealing followed by hot press sintering. Powder X-ray diffraction and scanning electron microscopy and electron energy dispersive spectroscopy analysis were performed for the samples, and the thermoelectric transport properties of samples were characterized. The experimental results showed that the synthetic tetrahedrites were consisted of principal Cu12Sb4S13 phase and a small amount of secondary Cu3SbS4 and CuSbS2. The electrical conductivity of the tetrahedrites decreased with increasing the Mn doping amount. Contrary to the electrical conductivity, the Seebeck coefficient of the tetrahedrites increased with increasing Mn doping amount. The thermal conductivity decreased with increasing Mn doping amount due to the suppression of the carrier contribution, as well as due to the substitution effect of Mn on the Cu site. For the Mn doped Cu12-xMnxSb4S13 compounds with x=0.5, 1.0, and 2.0, the ZT values decreased with the increase of Mn doping amount, a maximum ZT=0.89 was obtained for the Mn doped compound with x=0.5.


Sign in / Sign up

Export Citation Format

Share Document