scholarly journals Properties of Concrete Prepared with Silane Coupling Agent-Impregnated Coral Aggregate and Coral Concrete

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6454
Author(s):  
Jinming Liu ◽  
Boyu Ju ◽  
Qing Yin ◽  
Wei Xie ◽  
Haiying Xiao ◽  
...  

Silane coupling agent (SCA), a kind of organic solvent, was introduced to improve the performance of coral coarse aggregates and enhance the interfacial adhesion between the inorganic coral aggregate and the cement paste of coral concrete. The crushing indicator and water absorption of the coral aggregates over various dipping times were measured, and the slump, interface microhardness, and compressive strength of coral concrete tested. The microscopic appearances of the coral concrete before and after modification were analyzed based on SEM images. The experimental results indicate that SCA can effectively reduce the crushing indicator and water absorption of coral coarse aggregates, and the modification performance becomes better over time. SCA facilitates the generation of chemical forces between the coral aggregates and cement mortars, improves adhesion between the aggregates and mortars, augments the microhardness of the interface, and increases the compressive strength. According to the microscopic appearance of the treated and untreated coral aggregate interfaces, the aggregates and the mortars are in closer combination after modification.

2019 ◽  
Vol 56 (4) ◽  
pp. 435-447
Author(s):  
Guojian Wang ◽  
Tao Yang

The open cell rigid polyurethane foam (ORPUF) was prepared by adding chemical cell openers including O-500 and AK-9903. The FTIR results of cell openers and open cell rate of ORPUFs showed that O-500 has more effective cell opening capacity. In the ORPUF foaming formulation using O-500 as cell opener, silane coupling agent (KH-550) modified kaolin (organo-kaolin) was introduced into ORPUF with different weight loadings. The cellular morphology, apparent density, and compressive strength of the foams were tested in order to investigate the effects of organo-kaolin on the open cell rate and compressive property of the foams. The results showed that the open cell rate of ORPUFs slightly increased from 83.9% to 92.9% with the content of organo-kaolin. Meanwhile, compared to neat ORPUF, the compressive strength of foams increased by 72.8% when the content of introduced organo-kaolin was 4 parts per hundred of polyol by mass (php).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaohu Liu ◽  
Zhishu Yao ◽  
Weipei Xue ◽  
Xiang Li

To solve the difficult problems of failure of pretensioned bolt supports under high ground pressure and temperature, a new kind of anchorage agent with excellent performance is developed. First, the selection and compounding of raw materials were conducted. The new anchorage agent was obtained by modifying the PET resin by mixing with a phenolic epoxy vinyl ester resin (FX-470 resin) and adding a KH-570 silane coupling agent. Then, the viscosity, thermal stability, compressive strength under different temperatures, and anchorage capacity of the new anchorage agent were tested. Moreover, the best proportion ratio of anchorage agent by mixing resin : coarse stone powder : fine stone powder : accelerator : curing agent : KH-570 = 100 : 275 : 275 : 1 : 32.5 : 1 is obtained. The test results showed that, with the addition of a KH-570 silane coupling agent, the viscosity decreased significantly, thereby solving the difficult technical problems of pretensioned bolt supports in full-length anchorage support. Compared with the conventional anchorage agent, the compressive strength of the new anchorage agent increased by 20.4, 82.5, 118.2, and 237.5% at 10, 50, 80, and 110°C, respectively, and the anchorage capacity increased by 4.7, 8.7, 40.2, and 62.9% at 30, 50, 80, and 110°C, respectively. Finally, the enhancement in compressive strength and heat-resistant mechanism are revealed through microanalysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xuetao Qiao ◽  
Peng Wang ◽  
Cunfu Yan ◽  
Fang Li ◽  
Long Wu

In order to explore the influence of the shape and surface treatment of steel fiber on the mechanical properties of artificial granite matrix, the drawing models of W-type, L-type, V-type, and I-type steel fiber are established, the pull-out force of different shapes of steel fiber is calculated theoretically, and a large number of experimental specimens are made for the pull-out test of steel fiber and material strength test. Both theory and experiment show that W-type steel fiber has the greatest influence in artificial granite. The steel fibers with different shapes were treated with KH-550 silane coupling agent. Then the steel fibers with different shapes before and after treatment were put into the artificial granite matrix for pull-out test and material strength test. The results showed that, compared with L-type, V-type, and I-type steel fibers before and after KH-550 silane coupling agent treatment, W-type steel fibers after KH-550 silane coupling agent treatment have the best strength enhancement effect in artificial granite matrix.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-7
Author(s):  
Andrei-Ionut Perdum

In this study will be presented, how 20 millilitres of Silane Coupling Agent, adhered on 5 grams of Hollow Glass Bubbles (HGB), how the micro bubbles are looking before and after mixing, how to filter the hollow spheres from the agent and what needed to be taken in consideration when using coupling agents in processes. This paper will show how Silane Coupling Agent (3-Aminopropyl) triethoxysilane, adhered on the Hollow Glass Bubble (HGB). It is expected to observe at HR-SEM (High- Resolution Scanning Electron Microscopy) how the Hollow Glass Bubbles looks when the Silane Coupling Agent (KH-550) is applied on the filler vs when is not. During the process will be concluded, what risks should be taken in consideration, when using Silane Coupling Agents on Hollow Glass Spheres and what important information/ steps are needed to be taken in consideration before and after coupling treatment.


2019 ◽  
Vol 10 (1) ◽  
pp. 55-61
Author(s):  
Delovita Ginting

This study reports the effect of coating Silane Coupling Agent (SCA) on composite surfaces. Composites made from composite particulate kenaf fiber and empty oil palm bunches passing 50 mesh sieves using epoxy resin. The particle board compacting process was carried out using a Hydrolic Press compacting machine with a pressure of 20 Bars, holding time 10 minutes in the initial stages, and continued using a Hot Press compacting machine with a pressure of 20 Bars, temperature 150 oC, holding time 15 minutes. The process of treating the Silane Coupling Agent solution on the composite surface is done manually layered on the composite surface. Composites tensile strength were tested referring to ASTM D 638-14,  impact strenght tested referring ASTM D 256-04,  and Water Absorption using ASTM D 570. Surface examination was made with a Scanning Electron Microscope (SEM). The Silane Coupling Agent (SCA) coating has succeeded in increasing the bond between kenaf fibers,  empty oil palm bunches and epoxy  be effective and in accordance with increasing tensile strength, impact strength and water absorption.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 1230-1244
Author(s):  
Nabil Hayeemasae ◽  
Hanafi Ismail

The aim of this work was to develop sustainable composites based on natural rubber (NR) and tea waste (TW) composites. The main concern was the compatibility mismatch between NR and TW. The presence of polar groups in the TW contributes to the weak interaction between relatively hydrophobic NR and TW. Therefore, silane coupling agent was introduced to enhance the properties of the composites. Treating the TW by silane coupling agent greatly influenced the overall properties of the composites. It speeded up the curing process due to its ability to reduce possible adsorption of accelerator by TW. Better interaction between TW and rubber matrix was clearly observed as evidenced by the maximum torque (MH) and tensile properties of the composites. Such findings can be verified by the Qf/Qg values, indicating better rubber-filler interaction when silane was used. Moreover, scanning electron microscope (SEM) images also provided some evidence related to the tensile properties observed. It can be concluded that the new composite based on NR and TW was successfully prepared with the contribution of a silane coupling agent.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


Sign in / Sign up

Export Citation Format

Share Document