scholarly journals Residual Stress and Tribological Performance of ZrN Coatings Produced by Reactive Bipolar Pulsed Magnetron Sputtering

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6462
Author(s):  
Anna Maria Laera ◽  
Marcello Massaro ◽  
Domenico Dimaio ◽  
Aleksandar Vencl ◽  
Antonella Rizzo

In the past few decades, ZrN thin films have been identified as wear resistant coatings for tribological applications. The mechanical and tribological properties of ZrN thin layers depend on internal stress induced by the adopted deposition techniques and deposition parameters such as pressure, temperature, and growth rate. In sputtering deposition processes, the selected target voltage waveform and the plasma characteristics also play a crucial influence on physical properties of produced coatings. In present work, ZrN thin films, obtained setting different values of duty cycle in a reactive bipolar pulsed dual magnetron sputtering plant, were investigated to evaluate their residual stress through the substrate curvature method. A considerable progressive increase of residual stress values was measured at decreasing duty cycle, attesting the significant role of voltage waveform in stress development. An evident correlation was also highlighted between the values of the duty cycle and those of wear factor. The performed analysis attested an advantageous effect of internal stress, having the samples with high compressive stress, higher wear resistance. A downward trend for wear rate with the increase of internal residual stress was observed. The choice of suitable values of duty cycle allowed to produce ceramic coatings with improved tribological performance.


2019 ◽  
Vol 48 (6) ◽  
pp. 473-480 ◽  
Author(s):  
Umi Zalilah Mohamad Zaidi ◽  
A.R. Bushroa ◽  
Reza Rahbari Ghahnavyeh ◽  
Reza Mahmoodian

Purpose This paper aims to determine the crystallite size and microstrain values of AgSiN thin films using potential approach called approximation method. This method can be used as a replacement for other determination methods such as Williamson-Hall (W-H) plot and Warren-Averbach analysis. Design/methodology/approach The monolayer AgSiN thin films on Ti6Al4V alloy were fabricated using magnetron sputtering technique. To evaluate the crystallite size and microstrain values, the thin films were deposited under different bias voltage (−75, −150 and −200 V). X-ray diffraction (XRD) broadening profile along with approximation method were used to determine the crystallite size and microstrain values. The reliability of the method was proved by comparing it with scanning electron microscopy graph and W-H plot method. The second parameters’ microstrain obtained was used to project the residual stress present in the thin films. Further discussion on the thin films was done by relating the residual stress with the adhesion strength and the thickness of the films. Findings XRD-approximation method results revealed that the crystallite size values obtained from the method were in a good agreement when it is compared with Scherer formula and W-H method. Meanwhile, the calculations for thin films corresponding residual stresses were correlated well with scratch adhesion critical loads with the lowest residual stress was noted for sample with lowest microstrain and has thickest thickness among the three samples. Practical implications The fabricated thin films were intended to be used in antibacterial applications. Originality/value Up to the knowledge from literature review, there are no reports on depositing AgSiN on Ti6Al4V alloy via magnetron sputtering to elucidate the crystallite size and microstrain properties using the approximation method.



2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Wei Lin ◽  
Chia-Wei Lu ◽  
Ge-Ping Yu ◽  
Jia-Hong Huang

This study aims to investigate the effects of nitrogen flow rate (0–2.5 sccm) on the structure and properties of TiZrN films. Nanocrystalline TiZrN thin films were deposited on Si (001) substrates by unbalanced magnetron sputtering. The major effects of the nitrogen flow rate were on the phase, texture, N/(Ti + Zr) ratio, thickness, hardness, residual stress, and resistivity of the TiZrN films. The nitrogen content played an important role in the phase transition. With increasing nitrogen flow rate, the phase changed from mixed TiZr and TiZrN phases to a single TiZrN phase. The X-ray diffraction results indicated that (111) was the preferred orientation for all TiZrN specimens. The N/(Ti + Zr) ratio of the TiZrN films first increased with increasing nitrogen flow rate and then stabilized when the flow rate further increased. When the nitrogen flow rate increased from 0.4 to 1.0 sccm, the hardness and residual stress of the TiZrN thin film increased, whereas the electrical resistivity decreased. None of the properties of the TiZrN thin films changed with nitrogen flow rate above 1.0 sccm because the films contained a stable single phase (TiZrN). At high nitrogen flow rates (1.0–2.5 sccm), the average hardness and resistivity of the TiZrN thin films were approximately 36 GPa and 36.5 μΩ·cm, respectively.



Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2146 ◽  
Author(s):  
Chayma Abed ◽  
Susana Fernández ◽  
Selma Aouida ◽  
Habib Elhouichet ◽  
Fernando Priego ◽  
...  

In this study, high transparent thin films were prepared by radio frequency (RF) magnetron sputtering from a conventional solid state target based on ZnO:MgO:Al2O3 (10:2 wt %) material. The films were deposited on glass and silicon substrates at the different working pressures of 0.21, 0.61, 0.83 and 1 Pa, 300 °C and 250 W of power. X-ray diffraction patterns (XRD), atomic force microscopy (AFM), UV-vis absorption and Hall effect measurements were used to evaluate the structural, optical, morphological and electrical properties of thin films as a function of the working pressure. The optical properties of the films, such as the refractive index, the extinction coefficient and the band gap energy were systematically studied. The optical band gap of thin films was estimated from the calculated absorption coefficient. That parameter, ranged from 3.921 to 3.655 eV, was hardly influenced by the working pressure. On the other hand, the lowest resistivity of 8.8 × 10−2 Ω cm−1 was achieved by the sample deposited at the lowest working pressure of 0.21 Pa. This film exhibited the best optoelectronic properties. All these data revealed that the prepared thin layers would offer a good capability to be used in photovoltaic applications.



MRS Advances ◽  
2020 ◽  
Vol 5 (23-24) ◽  
pp. 1215-1223
Author(s):  
R.R. Phiri ◽  
O.P. Oladijo ◽  
E.T. Akinlabi

AbstractControl and manipulation of residual stresses in thin films is a key for attaining coatings with high mechanical and tribological performance. It is therefore imperative to have reliable residual stress measurements methods to further understand the dynamics involved. The sin2ψ method of X-ray diffraction was used to investigate the residual stresses on the tungsten carbide cobalt thin films deposited on a mild steel surface to understand the how the deposition parameters influence the generation of residual stresses within the substrate surface. X-ray spectra of the surface revealed an amorphous phase of the thin film therefore the stress measured was of the substrate surface and the effects of sputtering parameters on residual stress were analysed. Compressive stresses were identified within all samples studied. The results reveal that as the sputtering parameters are varied, the residual stresses also change. Optimum deposition parameters in terms of residual stresses were suggested.



2007 ◽  
Vol 556-557 ◽  
pp. 363-366 ◽  
Author(s):  
Jörg Pezoldt ◽  
Christian Förster ◽  
Volker Cimalla ◽  
Florentina Will ◽  
Ralf Stephan ◽  
...  

The resonant frequencies and quality factors of MEMS and NEMS depend critically on the layer quality and the residual stress in the SiC/Si heterostructure. It is demonstrated, that FTIRellipsometry is a suitable technique for monitoring the inhomogeneous residual stress inside SiC/Si heterostructures containing thin layers and their variation with during processing.



1983 ◽  
Vol 22 (Part 1, No. 8) ◽  
pp. 1252-1255 ◽  
Author(s):  
Hisataka Takenaka ◽  
Osamu Michikami


1997 ◽  
Vol 498 ◽  
Author(s):  
M. M. Lacerda ◽  
F. L. Freire

ABSTRACTAmorphous carbon-nitrogen films, a-CNx, deposited by rf-magnetron sputtering in N2 atmosphere were annealed in vacuum at temperatures between 300 and 700 °C. The annealing time was 30 minutes. The modifications on the film microstructure were monitored by infrared spectroscopy (IR), while the composition and the atomic density were determined by Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA). The internal stress was determined by measuring the film-induced bending of the substrate and the hardness was measured by nanoindentation. Atomic force microscopy (AFM) provided the friction coefficient and the surface roughness. The ratio between nitrogen and carbon atomic concentration decreases for temperatures higher than 500 °C, whereas the film density increases with the annealing temperature: 40 % in the temperature range here studied. The behavior of the D and G Raman bands, IR active due to the nitrogen incorporation in the carbon network, suggests a progressive increase of the size of the graphite-like domains. The hardness of the as-deposited a-CNx film is around 2 GPa. However, both hardness and internal stress increase by a factor of three in samples annealed at 700 °C, while the surface roughness and the friction coefficient decrease by a factor of about two.



Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 579
Author(s):  
Donglin Ma ◽  
Qiaoyuan Deng ◽  
Huaiyuan Liu ◽  
Yongxiang Leng

Titanium nitride (Ti-N) thin films are electrically and thermally conductive and have high hardness and corrosion resistance. Dense and defect-free Ti-N thin films have been widely used in the surface modification of cutting tools, wear resistance components, medical implantation devices, and microelectronics. In this study, Ti-N thin films were deposited by high power pulsed magnetron sputtering (HPPMS) and their plasma characteristics were analyzed. The ion energy of Ti species was varied by adjusting the substrate bias voltage, and its effect on the microstructure, residual stress, and adhesion of the thin films were studied. The results show that after the introduction of nitrogen gas, a Ti-N compound layer was formed on the surface of the Ti target, which resulted in an increase in the Ti target discharge peak power. In addition, the total flux of the Ti species decreased, and the ratio of the Ti ions increased. The Ti-N thin film deposited by HPPMS was dense and defect-free. When the energy of the Ti ions was increased, the grain size and surface roughness of the Ti-N film decreased, the residual stress increased, and the adhesion strength of the Ti-N thin film decreased.



2013 ◽  
Vol 549 ◽  
pp. 281-291 ◽  
Author(s):  
Yu-Chiao Hsiao ◽  
Jyh-Wei Lee ◽  
Yung-Chin Yang ◽  
Bih-Show Lou


Sign in / Sign up

Export Citation Format

Share Document