scholarly journals Numerical Models of the Connection of Thin-Walled Z-Profile Roof Purlins

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6573
Author(s):  
Přemysl Pařenica ◽  
Petr Lehner ◽  
Jiří Brožovský ◽  
Martin Krejsa

High thin-walled purlins of Z cross-section are important elements in steel wide-span structures. Their behaviour is influenced by many variables that need to be examined for every specific case. Their practical design thus requires extended knowledge of their behaviour for the possible configurations and dimensions. Numerical analysis verified by experimental investigation can thus enrich such knowledge. Numerical models have the advantage of repeatability and the ability to offer parametric changes. The parametric study presented shows a detailed description of a finite element model of thin-walled cross-sectional roof purlins connected to other roof elements. Models include various approaches to modelling bolt connection. Two schemes of purlins, with and without cleats, are presented. The results of different approaches in numerical modelling are compared with the results of a physical test on a real structure. The article shows a significant agreement in the case of specific approaches and points out the differences with others. The results can be helpful in terms of how to approach the modelling of thin-walled structures and the effective approach to experimental preparation.

2017 ◽  
Vol 22 (2) ◽  
pp. 393-402 ◽  
Author(s):  
P. Różyło ◽  
P. Wysmulski ◽  
K. Falkowicz

Abstract Thin-walled steel elements in the form of openwork columns with variable geometrical parameters of holes were studied. The samples of thin-walled composite columns were modelled numerically. They were subjected to axial compression to examine their behavior in the critical and post-critical state. The numerical models were articulately supported on the upper and lower edges of the cross-section of the profiles. The numerical analysis was conducted only with respect to the non-linear stability of the structure. The FEM analysis was performed until the material achieved its yield stress. This was done to force the loss of stability by the structures. The numerical analysis was performed using the ABAQUS® software. The numerical analysis was performed only for the elastic range to ensure the operating stability of the tested thin-walled structures.


Author(s):  
Marinus G. de Jong ◽  
Werner W. P. J. van de Sande ◽  
Just L. Herder

Tape springs are thin-walled structures with zero longitudinal and constant transverse curvature. Folding them twice and connecting both ends creates a tape loop which acts as a linear guide. When using a tape spring with a non-constant cross-section, a force generator can be created. At this time there is insufficient understanding of the influence of the tape spring’s cross-section on its behavior. This study investigates the influence of the subtended angle on the tape spring’s behavior, especially the energy distribution and the fold radius. A tape spring is once folded in a finite element model. By performing a curvature analysis of this folded geometry, the different regions within a tape spring are identified. This information is used to identify the amount of strain energy of each region. Finally, the fold radius and fold angle are determined by analyzing the geometry of the bent region. The analysis showed that the energy within the transition regions cannot be neglected. The energy within these regions as ratio of the total energy and the length of the transition regions both increase with the subtended angle. It is also shown that the fold radius is not constant when the subtended angle is small. Therefore, when designing a force generator using tape loops, the energy within the transition regions should be taken into account. The subtended angle should not be small to ensure a constant radius.


2014 ◽  
Vol 1019 ◽  
pp. 96-102
Author(s):  
Ali Taherkhani ◽  
Ali Alavi Nia

In this study, the energy absorption capacity and crush strength of cylindrical thin-walled structures is investigated using nonlinear Finite Elements code LS-DYNA. For the thin-walled structure, Aluminum A6063 is used and its behaviour is modeled using power-law equation. In order to better investigate the performance of tubes, the simulation was also carried out on structures with other types of cross-sections such as triangle, square, rectangle, and hexagonal, and their results, namely, energy absorption, crush strength, peak load, and the displacement at the end of tubes was compared to each other. It was seen that the circular cross-section has the highest energy absorption capacity and crush strength, while they are the lowest for the triangular cross-section. It was concluded that increasing the number of sides increases the energy absorption capacity and the crush strength. On the other hand, by comparing the results between the square and rectangular cross-sections, it can be found out that eliminating the symmetry of the cross-section decreases the energy absorption capacity and the crush strength. The crush behaviour of the structure was also studied by changing the mass and the velocity of the striker, simultaneously while its total kinetic energy is kept constant. It was seen that the energy absorption of the structure is more sensitive to the striker velocity than its mass.


2020 ◽  
Author(s):  
E. Carrera ◽  
◽  
A. Pagani ◽  
R. Augello

AbstractIn the framework of finite elements (FEs) applications, this paper proposes the use of the node-dependent kinematics (NDK) concept to the large deflection and post-buckling analysis of thin-walled metallic one-dimensional (1D) structures. Thin-walled structures could easily exhibit local phenomena which would require refinement of the kinematics in parts of them. This fact is particularly true whenever these thin structures undergo large deflection and post-buckling. FEs with kinematics uniform in each node could prove inappropriate or computationally expensive to solve these locally dependent deformations. The concept of NDK allows kinematics to be independent in each element node; therefore, the theory of structures changes continuously over the structural domain. NDK has been successfully applied to solve linear problems by the authors in previous works. It is herein extended to analyze in a computationally efficient manner nonlinear problems of beam-like structures. The unified 1D FE model in the framework of the Carrera Unified Formulation (CUF) is referred to. CUF allows introducing, at the node level, any theory/kinematics for the evaluation of the cross-sectional deformations of the thin-walled beam. A total Lagrangian formulation along with full Green–Lagrange strains and 2nd Piola Kirchhoff stresses are used. The resulting geometrical nonlinear equations are solved with the Newton–Raphson linearization and the arc-length type constraint. Thin-walled metallic structures are analyzed, with symmetric and asymmetric C-sections, subjected to transverse and compression loadings. Results show how FE models with NDK behave as well as their convenience with respect to the classical FE analysis with the same kinematics for the whole nodes. In particular, zones which undergo remarkable deformations demand high-order theories of structures, whereas a lower-order theory can be employed if no local phenomena occur: this is easily accomplished by NDK analysis. Remarkable advantages are shown in the analysis of thin-walled structures with transverse stiffeners.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042057
Author(s):  
Ziqian Zhang ◽  
Ying Zhong

Abstract The section flattening phenomenon (namely Bazier effect) will occur in the large bending deformation stage of thin-walled pipe in the continuous straightening process. The maximum section flattening amount and the residual section flattening amount are important process parameters, which are the basis for calculating the subsequent process parameters of the flattening circle, and directly determine the roundness of the final pipe and the product quality. However, it is hard to be obtained by the theoretical or experimental methods. Therefore, based on the structure and process parameters of the leveler, a finite element model was built to simulate the section flattening process. Then, ANSYS/LS-DYNA software was used to dynamically simulate the bending flattening phenomenon of thin-walled pipe in the continuous straightening process, and the stress and strain nephographic of the flattening deformation zone was obtained. By recording the position curve of the key nodes in the preventing process, the section flattening amount of the thin-walled pipe in the large bending deformation stage in the continuous straightening process was determined. The simulation results show that the dynamic simulation method can effectively predict the section flattening of thin-walled pipe in the process of continuous straightening.


2021 ◽  
Vol 15 (58) ◽  
pp. 77-85
Author(s):  
Amor Bouaricha ◽  
Naoual Handel ◽  
Aziza Boutouta ◽  
Sarah Djouimaa

In this experimental work, strength results obtained on short columns subjected to concentric loads are presented. The specimens used in the tests have made of cold-rolled, thin-walled steel. Twenty short columns of the same cross-section area and wall thickness have been tested as follows: 8 empty and 12 filled with ordinary concrete. In the aim to determine the column section geometry with the highest resistance, three different types of cross-sections have been compared: rectangular, I-shaped unreinforced and, reinforced with 100 mm spaced transversal links. The parameters studied are the specimen height and the cross-sectional steel geometry. The registered experimental results have been compared to the ultimate loads intended by Eurocode 3 for empty columns and by Eurocode 4 for compound columns. These results showed that a concrete-filled composite column had improved strength compared to the empty case. Among the three cross-section types, it has been found that I-section reinforced is the most resistant than the other two sections. Moreover, the load capacity and mode of failure have been influenced by the height of the column. Also, it had noted that the experimental strengths of the tested columns don’t agree well with the EC3 and EC4 results.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yiping Shen ◽  
Zhijun Zhu ◽  
Songlai Wang ◽  
Gang Wang

Tapered thin-walled structures have been widely used in wind turbine and rotor blade. In this paper, a spectral finite element model is developed to investigate tapered thin-walled beam structures, in which torsion related warping effect is included. First, a set of fully coupled governing equations are derived using Hamilton’s principle to account for axial, bending, and torsion motion. Then, the differential transform method (DTM) is applied to obtain the semianalytical solutions in order to formulate the spectral finite element. Finally, numerical simulations are conducted for tapered thin-walled wind turbine rotor blades and validated by the ANSYS. Modal frequency results agree well with the ANSYS predictions, in which approximate 30,000 shell elements were used. In the SFEM, one single spectral finite element is needed to perform such calculations because the interpolation functions are deduced from the exact semianalytical solutions. Coupled axial-bending-torsion mode shapes are obtained as well. In summary, the proposed spectral finite element model is able to accurately and efficiently to perform the modal analysis for tapered thin-walled rotor blades. These modal frequency and mode shape results are important to carry out design and performance evaluation of the tapered thin-walled structures.


2019 ◽  
Vol 32 (5) ◽  
pp. 1347-1356 ◽  
Author(s):  
Czesław Szymczak ◽  
Marcin Kujawa

AbstractThe paper addresses sensitivity analysis of free torsional vibration frequencies of thin-walled beams of bisymmetric open cross section made of unidirectional fibre-reinforced laminate. The warping effect and the axial end load are taken into account. The consideration is based upon the classical theory of thin-walled beams of non-deformable cross section. The first-order sensitivity variation of the frequencies is derived with respect to the design variable variations. The beam cross-sectional dimensions and the material properties are assumed the design variables undergoing variations. The paper includes a numerical example related to simply supported I-beams and the distributions of sensitivity functions of frequencies along the beam axis. Accuracy is discussed of the first-order sensitivity analysis in the assessment of frequency changes due to the fibre volume fraction variable variations, and the effect of axial loads is discussed too.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kaspars Kalnins ◽  
Mariano A. Arbelo ◽  
Olgerts Ozolins ◽  
Eduards Skukis ◽  
Saullo G. P. Castro ◽  
...  

Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, such as large-scale aerospace structures, are one of the most important techniques for the evaluation of new structures and validation of numerical models. The vibration correlation technique (VCT) allows determining the buckling load for several types of structures without reaching the instability point, but this technique is still under development for thin-walled plates and shells. This paper presents and discusses an experimental verification of a novel approach using vibration correlation technique for the prediction of realistic buckling loads of unstiffened cylindrical shells loaded under axial compression. Four different test structures were manufactured and loaded up to buckling: two composite laminated cylindrical shells and two stainless steel cylinders. In order to characterize a relationship with the applied load, the first natural frequency of vibration and mode shape is measured during testing using a 3D laser scanner. The proposed vibration correlation technique allows one to predict the experimental buckling load with a very good approximation without actually reaching the instability point. Additional experimental tests and numerical models are currently under development to further validate the proposed approach for composite and metallic conical structures.


Sign in / Sign up

Export Citation Format

Share Document