scholarly journals Analysis of the Quasi-Static and Dynamic Fracture of the Silica Refractory Using the Mesoscale Discrete Element Modelling

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7376
Author(s):  
Aleksandr S. Grigoriev ◽  
Andrey V. Zabolotskiy ◽  
Evgeny V. Shilko ◽  
Andrey I. Dmitriev ◽  
Kirill Andreev

Computer modelling is a key tool in the optimisation and development of ceramic refractories utilised as insulation in high-temperature industrial furnaces and reactors. The paper is devoted to the mesoscale computer modelling of silica refractories using the method of homogeneously deformable discrete elements. Approaches to determine the local mechanical properties of the constituents from the global experimental failure parameters and respective crack trajectories are considered. Simulations of the uniaxial compressive and tensile failure in a wide range of quasi-static and dynamic loading rates (102 s−1) are performed. The upper limit of the dynamic loading rates corresponds to the most severe loading rates during the scrap loading on the refractory lining. The dependence of the strength, fracture energy, and brittleness at failure on the loading rate is analysed. The model illustrates that an increase in the loading rate is accompanied by a significant change in the mechanical response of the refractory, including a decrease in the brittleness at failure, a more dispersed failure process, and a higher fraction of the large grain failure. The variation of the grain–matrix interface’s strength has a higher impact on the static compressive than on the static tensile properties of the material, while the material’s dynamic tensile properties are more sensitive to the interface strength than the dynamic compressive properties.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Liuqun Zhao ◽  
Li Zheng ◽  
Hui Qin ◽  
Tiesuo Geng ◽  
Yonggang Tan ◽  
...  

Concrete three-point bending beams with preexisting cracks are widely used to study the growth process of I-II mixed mode cracks. Studying the failure characteristics of preexisting cracks at different locations on concrete three-point bending beams not only has important scientific significance but also has a wide range of engineering application backgrounds in the safety assessment of engineering structures. In this paper, through several numerical experiments, the influence of preexisting cracks at different positions on the failure characteristics of concrete three-point bending beams is studied, and three typical failure modes are obtained. The failure process of the specimens with three typical failure modes is discussed in detail, and it is pointed out that the crack failure mode is tensile failure. The change trends of bearing capacity, acoustic emission quantity, and acoustic emission energy of three typical failure modes are analyzed. The maximum bearing capacity, the maximum acoustic emission quantity, and energy of three failure modes of concrete three-point bending beams generally show an increasing trend.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Lawrence Yoo ◽  
Hansang Kim ◽  
Andrew Shin ◽  
Vijay Gupta ◽  
Joseph L. Demer

This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at1.37±0.03(standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.


2009 ◽  
Vol 24 (3) ◽  
pp. 918-925 ◽  
Author(s):  
J. Sort ◽  
J. Fornell ◽  
W. Li ◽  
S. Suriñach ◽  
M.D. Baró

The mechanical behavior of Ti-based metallic glass has been investigated by means of indentation experiments at different loading rates. Contrary to many crystalline materials, an increase of the loading rate causes a reduction of hardness, i.e., a mechanical softening. This effect is ascribed to deformation-induced creation of excess free volume, which is more pronounced for higher strain rates. The decrease of hardness is accompanied with an increase of the contact stiffness and a reduction of the reduced elastic modulus. Finite element simulations reveal that the mechanical response of this material can be described using the Mohr-Coulomb yield criterion. The changes in the nanoindentation curves with the increase of loading rate are well reproduced by decreasing the value of the Mohr-Coulomb cohesive stress. This result is consistent with the presumed enhancement of free volume.


2016 ◽  
Vol 368 ◽  
pp. 3-6
Author(s):  
Mária Huráková ◽  
Kornel Csach ◽  
Jozef Miškuf ◽  
Alena Juríková ◽  
Štefan Demčák ◽  
...  

Nanoindentation experiments were executed on amorphous metallic ribbons made of Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 that differ in microhardness and glass forming ability. The individual serrated plastic flow events were analyzed in a wide range of the loading rates. In the individual pop-in events of the load-displacement (P-h) curve the contributions of plastic deformation (Δhpl) were calculated depending on the loading rate and the alloy composition. It is concluded that the contribution of the serrated plastic deformation flow varies with the composition of the alloy. The highest plastic deformation for the individual pop-ins was observed for Zr-based metallic glasses.


Author(s):  
Frank Z. Liang ◽  
Larry M. Palanuk ◽  
Mike Gabriel

This paper presents two simple and unique tests to extract shock-level loading limits for eutectic and lead free solders. A wide range of loading rates, from quasi-static to high speed, was applied to a through-hole-mounted anchor assembly test coupon. The high speed shock tests were conducted on a drop shock table where the impacting velocities were derived through table input adjustments. The quasi-static tests were done using controlled hydraulic linear actuator with a load cell. As would be assumed, the dynamic load to cause solder joint failure was found to increase with higher loading rate. However, at such a high loading rate range, the impact velocity did not change the load to failure. This study leads to an interesting hypothesis that at high loading rates, the solder joint strain rate may not see a significant change as observed at low rates.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ning Wang ◽  
Yingqian Xu ◽  
Dengyuan Zhu ◽  
Nan Wang ◽  
Benfu Yu

Coal bump refers to a sudden catastrophic failure of coal seam and usually causes serious damages to underground mining facilities and staff. Considering the combined coal-rock structure for coal bumps, failure process and acoustic emission (AE) characteristics of combined coal-sandstone samples under different loading rates were studied by uniaxial compression tests, and three basic failure modes and bump proneness for coal-rock structure were obtained. The following conclusions are drawn: (1) when loading rate was relatively low, plastic deformation of coal mass fully developed, while surface cracks of coal mass was not apparent and slip along the transfixion crack occurred in the postpeak stage; (2) with the increase in loading rate, surface tensile cracks developed into splitting cracks at the end of the prepeak stage and throughout the postpeak stage, and brittle failure finally happened due to the release of nonlinear step-shaped energy or one-time strain energy release of upper rock mass, resulting in the damage of internal bearing structure and weakening of bearing capacity; (3) the deformation and failure process of combined samples showed obvious phases, and corresponding AE energy release rate could be divided into periodic linear growth and transient growth, while the cumulative energy of AE events has multiple peak points and transient growth with the increase of loading rate; (4) it was demonstrated that two distinct frequency bands existed in AE events, which were about 50 kHz and 150 kHz, and the distribution of AE events near 50 kHz was larger and stronger, representing the main frequency range of cracks in coal mass. According to the damage characteristics and AE parameters for combined samples, an brittle model for coal-rock structure with mutation characteristics was proposed, and three basic failure modes for the combined structure with the increase of loading rate were progressive shear failure, splitting failure, and structural failure, respectively.


1984 ◽  
Vol 106 (4) ◽  
pp. 473-479
Author(s):  
N. Urabe ◽  
A. Yoshitake ◽  
H. Kagawa

In order to investigate the mechanisms and the factors to govern the brittle fracture initiation during the fatigue crack propagation at low temperatures, fracture toughness tests under wide range of loading rates, fatigue tests at low temperatures and fracture toughness tests after having been given pre-loading were performed on steels and weld junctions. The fatigue fracture toughness Kfc was estimated as equivalent as the fracture toughness Kc under the monotonic tensile loading if they were compared at the same loading rate, since the residual stress due to the cyclic loading was less effective on the brittle fracture initiation. The calculated fatigue life based on Paris’s formula taken into consideration of the crack closure phenomena showed a good one-by-one agreement with the observed fatigue life up to the brittle fracture initiation. Therefore, a design curve was preliminarily drawn to determine the fatigue life at low temperatures.


2021 ◽  
Vol 250 ◽  
pp. 01003
Author(s):  
Yoshikatsu Kimoto ◽  
Kohei Kanamori ◽  
Akio Yonezu ◽  
Hiroyuki Yamada

This study evaluated the interfacial adhesive strength between aluminium alloy and epoxy resin (Al/epoxy resin) over a wide range of strain rates (loading rates). We conducted three types of tests with different loading rate, i.e., a quasi-static tensile test for the range of lower loading rate, a Split Hopkinson Bar (SHB) for the range of middle loading rate, and Laser Shock Adhesion Test (LaSAT) for the range of higher loading rate. LaSAT is a unique test of adhesion evaluation, since laser induced shock wave is employed to lead interfacial fracture. In parallel, finite element method (FEM) is conducted in order to calculate stress distribution at the interface during LaSAT. As a result, it was found that the interface between the aluminium alloy and the epoxy resin interface shows significant loading rate dependency of the adhesion strength and this tendency is very similar to that of bulk epoxy materials.


Sign in / Sign up

Export Citation Format

Share Document