scholarly journals Study of the Mechanical, Sound Absorption and Thermal Properties of Cellular Rubber Composites Filled with a Silica Nanofiller

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7450
Author(s):  
Marek Pöschl ◽  
Martin Vašina

This paper deals with the study of cellular rubbers, which were filled with silica nanofiller in order to optimize the rubber properties for given purposes. The rubber composites were produced with different concentrations of silica nanofiller at the same blowing agent concentration. The mechanical, sound absorption and thermal properties of the investigated rubber composites were evaluated. It was found that the concentration of silica filler had a significant effect on the above-mentioned properties. It was detected that a higher concentration of silica nanofiller generally led to an increase in mechanical stiffness and thermal conductivity. Conversely, sound absorption and thermal degradation of the investigated rubber composites decreased with an increase in the filler concentration. It can be also concluded that the rubber composites containing higher concentrations of silica filler showed a higher stiffness to weight ratio, which is one of the great advantages of these materials. Based on the experimental data, it was possible to find a correlation between mechanical stiffness of the tested rubber specimens evaluated using conventional and vibroacoustic measurement techniques. In addition, this paper presents a new methodology to optimize the blowing and vulcanization processes of rubber samples during their production.

Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


2021 ◽  
pp. 096739112110324
Author(s):  
Mihir N Velani ◽  
Ritesh R Patel

The role of nanodielectrics in the electrical power system is becoming crucial owing to its superior properties and potential applications in the field. Yet, the materials face limited breakdown strength and thermal properties. Further, the nanodielectrics have not found a comprehensive commercial platform because of the costly manufacturing process, and characterization and testing facilities. Therefore, to reduce the involved cost, in this work, an FE (finite element) based computational technique has been implemented to visualize the effect of shape, size, and filler concentration under the application of high voltage (HV). The epoxy-based nanodielectrics have been modeled incorporating a range of different shapes and size nanofillers—Al2O3, BN, BeO, SiO2, and TiO2. The paper discusses the 2D-analysis of the modeled nanodielectric in the steady-state electrostatic fields and thermal domains. It shows the insights of the nanofillers’ choice to ensure a perfect blend of electrical and thermal properties. The epoxy with square-shaped BeO fillers showed a rise in the electric field of nearly 1.5 times than unfilled neat epoxy, which indicates a significant surge in thermal conductivity at specific filler loading.


Author(s):  
Rui Dai ◽  
Beomjin Kwon ◽  
Qiong Nian

Abstract Stochastic foam with hierarchy order pore structure possesses distinguished physical properties such as high strength to weight ratio, super lightweight, and extremely large specific area. These exceptional properties make stochastic foam as a competitive material for versatile applications e.g., heat exchangers, battery electrodes, automotive components, magnetic shielding, catalyst devices and etc. Recently, the more advanced hollow cellular (shellular) architectures with well-developed structure connections are studied and expected to surpass the solid micro/nanolattices. However, in terms of theoretical predicting and studying of the cellular foam architecture, currently no systematic model can be utilized to accurately capture both of its mechanical and thermal properties especially with hollow struts due to complexity induced by its stochastic and highly reticulate nature. Herein, for the first time, a novel packing three-dimensional (3D) hollow dodecahedron (HPD) model is proposed to simulate the cellular architecture. An electrochemical deposition process is utilized to manufacture the metallic foam with hollow struts. Mechanical and thermal testing of the as-manufactured foams are carried out to compare with the HPD model. HPD model is proved to accurately capture both the topology and the physical properties of stochastic foam at the similar relative density. Particularly, the proposed model makes it possible to readily access and track the physical behavior of stochastic foam architecture. Accordingly, this work will also offer inspiration for designing an efficient foam for specific applications.


2021 ◽  
Author(s):  
VIJAY K. GOYAL ◽  
AUSTIN PENNINGTON ◽  
JASON ACTION

The high strength-to-weight and stiffness-to-weight ratio materials, such as laminated composites, are advantageous for modern aircraft. Laminated composites with initial flaws are susceptible to delamination under buckling loads. PDA tools help enhance the industry’s understanding of the mechanisms for damage initiation and growth in composite structures while assisting in the design, analysis, and sustainment methods of these composite structures. The global-local modeling approach for the single-stringer post-buckled panel was evaluated through this effort, using Teflon inserts to simulate the defect of damage during manufacturing. This understanding is essential for designing the post-buckled structure, reducing weight while predicting damage initiation location, and addressing a potential design review for future aircraft repairs. In this work, the initial damage was captured with Teflon inserts as the starting configuration; and any reference to the damage initiation refers to any damage beyond the “initial unbonded region.” The effort aims to develop, evaluate, and enhance methods to predict damage initiation and progression and the failure of post-buckled hat-stiffened panels using multiple Abaqus FEA Virtual Crack Closure Technique (VCCT) definitions. Validation of the PDA using the VCCT material model was performed on a large single-stringer panel subjected to compressive loading. The compressive loading of the panel caused the skin to buckle before any damage began to occur locally. In addition, comparisons are made for critical aspects of the damage morphology, such as a growth pattern that included delamination from the skin-stiffener interface to the skin and ply interfaces. When compared against the experimental data produced through the NASA Advanced Composites Project (ACP), the present model captured damage migration from one surface to another, and model validations were ~5% of the experimental data.


2020 ◽  
Vol 10 ◽  
pp. 184798042092275
Author(s):  
Luciana A. Castillo ◽  
Silvia E. Barbosa

A comparative analysis of crystallization behavior induced by several mineral fillers in polypropylene nanocomposites was performed. Morphological changes and thermal properties of nanocomposites were evaluated, considering the influence of shape, crystalline morphology, and concentration of mineral particles. For this study, hydrated magnesium silicates with different particle morphologies, such as platelets (talc) and fibers (sepiolite), were used for nanocomposites. In addition, to analyze the effect of mineral crystallinity on nanocomposites, talc and sepiolite from different origin and genesis were selected. Nanocomposites were compounded and injection molded, using different filler concentration (0, 1, and 3% w/w) for each mineral particle. To evaluate the particle influence on nanocomposite crystallinity, X-ray diffraction was used to determine crystalline phases and crystal orientation, meanwhile differential scanning calorimetry was performed to obtain thermal properties. Main results revealed that talc has a higher nucleating effect on polypropylene matrix than sepiolite fibers, regardless of their origin and genesis. Meanwhile, a transcrystalline layer that surrounds the fiber surface is observed for nanocomposite containing sepiolite. Moreover, Argentinean talc induces different crystalline phases in nanocomposite with respect to Australian one, which partly influences on mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document