scholarly journals Experimental Investigation on Geopolymer Concrete with Various Sustainable Mineral Ashes

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7596
Author(s):  
Narayanan Subash ◽  
Siva Avudaiappan ◽  
Somanathan Adish Kumar ◽  
Mugahed Amran ◽  
Nikolai Vatin ◽  
...  

The aim of this research was to find the best alternative for river sand in concrete. In both geopolymer concrete (GPC) and cement concrete (CC), the fine aggregates are replaced with various sustainable mineral ashes, and mechanical and durability tests are conducted. Specimens for tests were made of M40 grade GPC and CC, with five different soil types as river sand substitute. The materials chosen to replace the river sand are manufactured sand (M-sand), sea sand, copper slag, quarry dust, and limestone sand as 25%, 50%, 75%, and 100%, respectively by weight. GPF50 and CC50 were kept as control mixes for GPC and CC, respectively. The test results of respective concretes are compared with the control mix results. From compressive strength results, M-sand as a fine aggregate had an increase in strength in every replacement level of GPC and CC. Additionally, copper slag is identified with a significant strength reduction in GPC and CC after 25% replacement. Copper slag, quarry dust, and limestone sand in GPC and CC resulted in considerable loss of strength in all replacement levels except for 25% replacement. The cost of GPC and CC is mixed with the selected fine aggregate replacement materials which arrived. Durability and cost analyses are performed for the advisable mixes and control mixes to have a comparison. Durability tests, namely, water absorption and acid tests and water permeability and thermal tests are conducted and discussed. Durability results also indicate a positive signal to mixes with M-sand. The advisable replacement of river sand with each alternative is discussed.

2021 ◽  
Vol 309 ◽  
pp. 01114
Author(s):  
K. Veera Babu ◽  
T. Srinivas ◽  
Mahathi Tummala

Concrete is the most adaptable, long-lasting, and dependable construction material on the planet. There are numerous environmental concerns associated with the production of OPC, and natural sand is becoming more expensive and scarce as a result of unlawful river sand dredging. The greatest replacement material for traditional concrete is geopolymer concrete with low calcium fly ash. The purpose of this paper is to investigate the mechanical properties of geopolymer concrete of grades G30 and G50, which are equivalent to M30 and M50, when river sand is substituted in various quantities with manufactured sand, such as 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%. When compared to the equivalent grades of controlled concrete, geopolymer concrete improves mechanical properties such as compressive, tensile, and flexural strengths.


2018 ◽  
Vol 6 (6) ◽  
pp. 453-460
Author(s):  
Chijioke C ◽  
Nwaiwu ◽  
Aginam ◽  
Anyadiegwu

This work focuses on the 100% replacement of river sand with quarry dust in the production of concrete. Two types of concrete were produced (concrete made with river sand and that made with quarry dust as fine aggregate), the concretes produces were cast into beams and cured for 28 days. The flexural strengths of the concrete beams cast was determine at 28 day strength. At 28 days target strength the maximum flexural strength of concrete made with river sand as fine aggregate is 5.375111N/mm2 and minimum flexural strength is 2.2155N/mm2, for the concrete made with quarry dust as fine aggregate the maximum flexural strength is 2.567 N/mm2. The maximum value of 2.567 N/mm2 for concrete made with quarry dust as fine aggregate is higher than the minimum value of 2.2155N/mm2 for concrete made with river sand as fine aggregate. With this result it shows that quarry dust is a good substitute to river sand in the production of concrete.


Conventionally used cement –a primary binder also a necessitate element in producing concrete rates first in the construction industry. Production of conventional cement requires a greater skill and is energy intensive. The usage of waste materials in the production of concrete and reduction in cement content was only the possible alternative in the past decade. Associated risks with the production of Ordinary Portland Cement are well known. A greener aided with a natural friendly claim can be made only with the usage of the waste materials and reduction in evolving respiration gas to the atmosphere. Almost all works are carried out using source material fly ash, with fine aggregate and coarse aggregate. Concrete plays a vital role in the construction industry and on the other hand, river sand; one of the essential material has become very expensive which is a scarce material. Depletion of sand is a hectic issue due to increased usage of sand in construction. No other replacement materials such as quarry rock dust is not concentrated in casting geopolymer specimens. Even though in some research papers the replacement materials are added only in partial replacement without aiming on 100% replacement. Many researches mainly focus towards test results of GPC specimens using steel fibers, glass fibers. But the study related to natural fibers and hybrid fibers are found scarce. The main part of this work aimed at characterizing the engineering strength properties of geopolymer concrete by 100% replacement of fine aggregate with quarry rock dust. Hence, combination of flyash and quarry rock dust in GPC have been considered for evaluating the mechanical properties of geopolymer concrete. Also, investigation focuses on incorporation of three different fibers namely polypropylene fibers(PF), coir fibers(CF) and hybrid fibers(HF) in different percentage of proportions such as 0.5%,1%,and 1.5% to determine the maximum strength properties of GPC.


In recent decades, there is a sprut in the growth of the construction industry. Aggregates are one of the main ingredients for making concrete. Depletion of natural resources of sand and the effect of mass production of cement on sustainable environment, need studies on the use of alternative materials. On the other hand, dumping of wastes from the industries are piling up resulting in the pollution of the environment. By considering the above facts, severe studies are focused on partial replacement of river sand with alternatives like copper slag, steel slag, quarry dust, etc., The outcome of these studies shows that the alternate materials enlarge the mechanical and durability properties of concrete. The optimum dose of alternate materials to replacement of sand is evaluated. In this paper, technical papers published by researchers are studied, discussed and compared


2020 ◽  
Vol 44 (6) ◽  
pp. 433-439
Author(s):  
Vijayasarathy Rathanasalam ◽  
Jayabalan Perumalsami ◽  
Karthikeyan Jayakumar

This paper presents the properties of blended geopolymer concrete manufactured using fly ash and ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS), along with the copper slag (CPS) as replacement of fine aggregate (crushed stone sand). Various parameters considered in this study include different sodium hydroxide concentrations (10M, 12M and 14M); 0.35 as alkaline liquid to binder ratio; 2.5 as sodium silicate to sodium hydroxide ratio and cured in ambient curing condition. Further, geopolymer concrete was manufactured using fly ash as the prime source material which is replaced with UFGGBFS (0%, 5%, 10% and 15%). Copper slag has been used as replacement of fine aggregate in this study. Properties of the fresh manufactured geopolymer concrete were studied by slump test. Compressive strength of the manufactured geopolymer concrete was tested and recorded after curing for 3, 7 and 28 days. Microstructure Characterization of Geopolymer concrete specimens was done by Scanning Electron Microscope (SEM) analysis. Experimental results revealed that the addition of UFGGBFS resulted in an increased strength performance of geopolymer concrete. Also, this study demonstrated that the strength of geopolymer concrete increased with an increase in sodium hydroxide concentration. SEM results revealed that the addition of UFGGBFS resulted in a dense structure.


2015 ◽  
Vol 1115 ◽  
pp. 160-165
Author(s):  
Maisarah Ali ◽  
Muhammad Hariz Nordin ◽  
Siti Asmahani Saad

Concrete is a common material that widely used in construction industry. Excessive usage of this material causes exhaustibility to its components, especially fine aggregate or sand. In this regard, the use of manufactured sand is considered as a part of the solutions to fix this problem as it is readily available. In this research, the manufactured sand is used at 40%, 50% and 60% to replace natural river sand. SEM analysis reveals the rough surface texture of manufactured sand. The manufactured sand has angular shape and sieve analysis reveled that it has a considerable amount of fine particle. Slump test shows that concrete using manufactured sand pass the standard. On the other hand, compressive test shows that concrete cubes using manufactured sand do not achieved the target strength. Water absorptive test on the cubes revealed that M-Sand I has higher absorptivity property compared to river sand . SEM analysis revealed the existance of microcrack as well as porosity in in concrete cubes incorporating of manufactured sand. It can be concluded that it can be concluded that the higher the percentage of manufactured sand in the concrete mix the lower is the comprensive strength.


2021 ◽  
Author(s):  
Vijayasarathy RATHANASALAM ◽  
Jayabalan PERUMALSAMI ◽  
Karthikeyan JAYAKUMAR

This work presents a novel way to examine the characteristics of fly ash, copper slag (CPS) along with the addition of Ultrafine Ground Granulated Blast Furnace Slag (UFGGBFS) based Geopolymer Concrete (GPC) for various molarities (10M, 12M and 14M). In GPC, fly ash was replaced with UFGGBFS (5 %, 10 % and 15 %) and copper slag was used as fine aggregate. Mechanical Characterization such as split tensile, flexural strength, workability and water absorption were conducted . GPC characterization and microstructural behaviour was studied  by examining X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). From experimental results this study concludes that with a rise in molarity of GPC, along with incorporation of UFGGBFS, improved the performance, densification and strength of GPC.


Abstract. Continuous extraction of sand is having a huge impact on the natural river beds which has resulted in lowering of water table and a decrease in the amount of sediment supply. Despite the quantity of sand used in our day-to-day activities, our dependence on sand is significantly increasing. The use of manufactured sand as a fine aggregate in concrete draws the attention of many investigators and researchers. The present investigation includes the study of soundness and EDAX .The test results depicted that for M-sand substituted concrete the loss of weight, when subjected to alternate cycles of freezing and thawing when tested with magnesium and sodium sulphate solution was found to be less when compared with natural sand. The important observation is that the inclusion of manufactured sand in concrete reduces the pores present in concrete resulting in matrix densification and makes the concrete impermeable and substantially reduces the rate of oxygen diffusion and reduces the corrosion process as well. This paper also focuses on the effect of manufactured sand as a fine aggregate in the elastic and bond characteristics of concrete.


Sign in / Sign up

Export Citation Format

Share Document