scholarly journals Structural Lattice Topology and Material Optimization for Battery Protection in Electric Vehicles Subjected to Ground Impact Using Artificial Neural Networks and Genetic Algorithms

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7618
Author(s):  
Alvian Iqbal Hanif Nasrullah ◽  
Sigit Puji Santosa ◽  
Djarot Widagdo ◽  
Faizal Arifurrahman

A critical external interference that often appears to pose a safety issue in rechargeable energy storage systems (RESS) for electric vehicles (EV) is ground impact due to stone impingement. This study aims to propose the new concept of the sandwich for structural battery protection using a lattice structure configuration for electric vehicle applications. The protective geometry consists of two layers of a twisted-octet lattice structure. The appropriate lattice structure was selected through topology and material optimization using an artificial neural network (ANN), genetic algorithms (GA), and multi-objective optimization with technique for order of preference by similarity to ideal solution (TOPSIS) methods. The optimization variables are the lattice structure relative density, ρ¯, angle, θ, and strength of the materials, σy. Numerical simulations were used to model the dynamic impact loading on the structures due to a conical stone mass of 0.77 kg traveling at 162 km/h. The two-layer lattice structure configuration appears to be suitable for the purposes of RESS protection. The optimum configuration for battery protection is a lattice structure with an angle of 66°, relative density of 0.8, and yield strength of 41 MPa. This optimum configuration can satisfy the safety threshold of battery-shortening deformation. Therefore, the proposed lattice structure configuration can potentially be implemented for electric vehicle applications to protect the battery from ground impact.

2021 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Leonardus Kenny Pratama ◽  
Sigit Puji Santosa ◽  
Tatacipta Dirgantara ◽  
Djarot Widagdo

Improvement in electric vehicle technology requires the lithium-ion battery system’s safe operations, protecting battery fire damage potential from road debris impact. In this research a design of sandwich panel construction with a lattice structure core is evaluated as the battery protection system. Additive manufacturing technology advancements have paved the way for lattice structure development. The sandwich protective structure designs are evaluated computationally using a non-linear dynamic finite element analysis for various geometry and material parameters. The lattice structure’s optimum shape was obtained based on the highest Specific Energy Absorption (SEA) parameter developed using the ANOVA and Taguchi robust design method. It is found that the octet-cross lattice structure with 40% relative density provided the best performance in terms of absorbing impact energy. Furthermore, the sandwich panel construction with two layers of lattice structure core performed very well in protecting the lithium-ion NCA battery in the ground impact loading conditions, which the impactor velocity is 42 m/s, representing vehicle velocity in highway, and weigh 0.77 kg. The battery shortening met the safety threshold of less than 3 mm deformation.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3736
Author(s):  
Jae-Oh Han ◽  
Won-Hyeong Jeong ◽  
Jong-Seok Lee ◽  
Se-Hoon Oh

As environmental regulations have been strengthened worldwide since the Paris Climate Agreement, the automobile industry is shifting its production paradigm to focus on eco-friendly vehicles such as electric vehicles and hydrogen-battery vehicles. Governments are banning fossil fuel vehicles by law and expanding the introduction of green vehicles. The energy efficiency of electric vehicles that use a limited power source called batteries depends on the driving environment. Applying a two-speed transmission to an electric vehicle can optimize average speed and performance efficiency at low speeds, and achieve maximum speed with minimal torque at high speeds. In this study, a two-speed transmission for an electric vehicle has been developed, to be used in a compact electric vehicle. This utilizes a planetary gear of a total of three pairs, made of a single module which was intended to enable two-speed. The ring gear was removed, and the carrier was used in common. When shifting, the energy used for the speed change is small, due to the use of the simple method of fixing the sun gear of each stage. Each gear was designed by calculating bending strength and surface durability, using JGMA standards, to secure stability. The safety factor of the gears used in the transmission is as follows: all gears have been verified for safety with a bending strength of 1.2 or higher and a surface pressure strength of 1.1 or higher. The design validity of the transmission was verified by calculating the gear meshing ratio and the reference efficiency of the gear. The transmission to be developed through the research results of this paper has a simple and compact structure optimized for electric vehicles, and has reduced shift shock. In addition, energy can be used more efficiently, which will help improve fuel economy and increase drive range.


Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 732-737
Author(s):  
Zhiping Wang ◽  
Yicha Zhang ◽  
Gaofeng Li ◽  
Guoqing Jin ◽  
Alain Bernard

Author(s):  
Christian Dorsch ◽  
Xiao Wang ◽  
Ferit Küçükay

AbstractThe calibration of conventional, hybrid and electric drivetrains is an important process during the development phase of any vehicle. Therefore, to optimize the comfort and dynamic behavior (known as driveability), many test drives are performed by experienced drivers during different driving maneuvers, e.g., launch, re-launch or gear shift. However, the process can be kept more consistent and independent of human-based deviations by using objective ratings. This study first introduces an objective rating system developed for the launch behavior of conventional vehicles with automatic transmission, dual-clutch transmission, and alternative drivetrains. Then, the launch behavior, namely comfort and dynamic quality, is compared between two conventional vehicles, a plug-in hybrid electric vehicle and a battery electric vehicle. Results show the benefits of pure electric drivetrains due to the lack of launch and shifting elements, as well as the usage of a highly dynamic electric motor. While the plug-in hybrid achieves a 10% higher overall rating compared to the baseline conventional vehicle, the pure electric vehicle even achieves a 21% higher overall rating. The results also highlight the optimization potential of battery electric vehicles regarding their comfort and dynamic characteristics. The transitions and the gradient of the acceleration build-up have a major influence on the launch quality.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


Sign in / Sign up

Export Citation Format

Share Document