scholarly journals Grasp Point Optimization and Leakage-Compliant Dimensioning of Energy-Efficient Vacuum-Based Gripping Systems

Machines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 149
Author(s):  
Felix Gabriel ◽  
Susanna Baars ◽  
Martin Römer ◽  
Klaus Dröder

Vacuum-based handling, used in many applications and industries, offers great flexibility and fast handling processes. However, due to significant energy conversion losses from electrical energy to the useable suction flow, vacuum-based handling is highly energy-inefficient. In preliminary work, we showed that our grasp optimization method offers the potential to save at least 50% of energy by a targeted placement of individual suction cups on the part to be handled. By considering the leakage between gripper and object, this paper aims to extend the grasp optimization method by predicting the effective compressed air consumption depending on object surface roughness, gripper diameter and gripper count. Through balancing of the target pressure difference and the leakage tolerance in combination with the gripper count and gripper diameter, significant reductions of the compressed air, use and therefore the overall energy consumption, can be achieved. With knowledge about the gripper-specific leakage behavior, in the future it will be straightforward for system integrators to minimize the need for oversizing due to process-related uncertainties and therefore to provide application-specific and energy-optimized handling solutions to their customers.

Author(s):  
Anggara Trisna Nugraha ◽  
Lailia Nur Safitri

Currently, the demand for electrical energy in homes, buildings, and industry is increasing, in line with population and economic growth. Of course, because of the massive use of electrical energy, it is necessary to increase efficiency. Large shopping malls in some countries are the biggest consume electricity, especially when it comes to cooling systems. Therefore, it is necessary to save energy in shopping centers. Because there are still few tenants and shopping centers that are relatively quiet, the mall's energy consumption is low, so it requires increasing energy-efficient consumption efficiency by optimizing power management and calculating the chiller performance coefficient (COP). This research aims to increase the chiller performance coefficient (COP) to save energy in shopping centers. The optimization method used is to make changes to the chiller ignition schedule when it's used in malls. Through the analysis from this research, it was found that the COP increased to 0.584, and the value before optimization was 6.181. With increasing COP, the chiller performance will increase. The effect of increasing the chiller's performance could optimize the electrical energy efficiency of the chiller in 138.82 kWh/day


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1796
Author(s):  
Nerijus Morkevicius ◽  
Algimantas Venčkauskas ◽  
Nerijus Šatkauskas ◽  
Jevgenijus Toldinas

Fog computing is meant to deal with the problems which cloud computing cannot solve alone. As the fog is closer to a user, it can improve some very important QoS characteristics, such as a latency and availability. One of the challenges in the fog architecture is heterogeneous constrained devices and the dynamic nature of the end devices, which requires a dynamic service orchestration to provide an efficient service placement inside the fog nodes. An optimization method is needed to ensure the required level of QoS while requiring minimal resources from fog and end devices, thus ensuring the longest lifecycle of the whole IoT system. A two-stage multi-objective optimization method to find the best placement of services among available fog nodes is presented in this paper. A Pareto set of non-dominated possible service distributions is found using the integer multi-objective particle swarm optimization method. Then, the analytical hierarchy process is used to choose the best service distribution according to the application-specific judgment matrix. An illustrative scenario with experimental results is presented to demonstrate characteristics of the proposed method.


Author(s):  
Iasonas Filippopoulos ◽  
Iraklis Anagnostopoulos ◽  
Alexandros Bartzas ◽  
Dimitrios Soudris ◽  
George Economakos

2012 ◽  
Vol 576 ◽  
pp. 41-45
Author(s):  
A.K.M. Nurul Amin ◽  
M.A. Mahmud ◽  
M.D. Arif

The majority of semiconductor devices are made up of silicon wafers. Manufacturing of high-quality silicon wafers includes numerous machining processes, including end milling. In order to end mill silicon to a nano-meteric surface finish, it is crucial to determine the effect of machining parameters, which influence the machining transition from brittle to ductile mode. Thus, this paper presents a novel experimental technique to study the effects of machining parameters in high speed end milling of silicon. The application of compressed air, in order to blow away the chips formed, is also investigated. The machining parameters’ ranges which facilitate the transition from brittle to ductile mode cutting as well as enable the attainment of high quality surface finish and integrity are identified. Mathematical model of the response parameter, the average surface roughness (Ra) is subsequently developed using RSM in terms of the machining parameters. The model was determined, by Analysis of Variance (ANOVA), to have a confidence level of 95%. The experimental results show that the developed mathematical model can effectively describe the performance indicators within the controlled limits of the factors that are being considered.


2018 ◽  
Vol 77 (12) ◽  
pp. 2917-2928 ◽  
Author(s):  
Mihir Kumar Sahoo ◽  
John E. Kumar ◽  
Bhauk Sinha ◽  
Morten Marbaniang ◽  
Rajeshwar N. Sharan

Abstract The present study reports a process for simultaneous mineralization and detoxification of Mordant Black 17 with high electrical energy efficiency. Hydrogen peroxide and ammonium persulphate (APS) were used for the generation of hydroxyl and sulphate radicals using UV light (λ = 254 nm) and Fe2+ and Ag+ ions as catalysts. The detoxification and energy efficiency of various processes were measured by monitoring growth inhibition of Escherichia coli and Electrical Energy per Order (EE/O) applicable for low concentration contaminants respectively. Systems catalyzed by Fe2+ are more energy efficient and possess higher mineralization and detoxification efficiency than that of Ag+. The concentration of the catalysts and oxidants were found to strongly influence the EE/O of the systems. The most cost efficient processes for simultaneous mineralization and detoxification are Fe2+/APS/UV at pH 3.00 and Fe2+/H2O2/UV at pH 3.00 and 5.78. The upper limit concentration of Fe2+ is fixed at 0.01 mM for complete detoxification. The treated solutions start detoxifying at this concentration, above which they remain more toxic than the original dye solution irrespective of the extent of mineralization. On the contrary, no such limit could be established for Ag+ systems for complete detoxification even after 91% mineralization.


Sign in / Sign up

Export Citation Format

Share Document