scholarly journals Chemistry and Biology of Bioactive Glycolipids of Marine Origin

Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 294 ◽  
Author(s):  
Iván Cheng-Sánchez ◽  
Francisco Sarabia

Glycolipids represent a broad class of natural products structurally featured by a glycosidic fragment linked to a lipidic molecule. Despite the large structural variety of these glycoconjugates, they can be classified into three main groups, i.e., glycosphingolipids, glycoglycerolipids, and atypical glycolipids. In the particular case of glycolipids derived from marine sources, an impressive variety in their structural features and biological properties is observed, thus making them prime targets for chemical synthesis. In the present review, we explore the chemistry and biology of this class of compounds.

2021 ◽  
Vol 14 (12) ◽  
pp. 1274
Author(s):  
Jinyun Chen ◽  
Sunyan Lv ◽  
Jia Liu ◽  
Yanlei Yu ◽  
Hong Wang ◽  
...  

1,3-Oxazole chemicals are a unique class of five-membered monocyclic heteroarenes, containing a nitrogen atom and an oxygen. These alkaloids have attracted extensive attention from medicinal chemists and pharmacologists owing to their diverse arrays of chemical structures and biological activities, and a series of 1,3-oxazole derivatives has been developed into therapeutic agents (e.g., almoxatone, befloxatone, cabotegravir, delpazolid, fenpipalone, haloxazolam, inavolisib). A growing amount of evidence indicates that marine organisms are one of important sources of 1,3-oxazole-containing alkaloids. To improve our knowledge regarding these marine-derived substances, as many as 285 compounds are summarized in this review, which, for the first time, highlights their sources, structural features and biological properties, as well as their biosynthesis and chemical synthesis. Perspective for the future discovery of new 1,3-oxazole compounds from marine organisms is also provided.


Author(s):  
Gary W. Morrow

We saw in the previous chapter how Otto Wallach’s early proposal regarding the structural origin of terpenoid natural products was later refined by the insightful work of Leopold Rudzicka, leading to the biogenetic isoprene rule and all that it implies. In a nearly parallel fashion, we find in our present chapter a second, unrelated class of naturally occurring compounds whose characteristic structural features prompted an initial innovative hypothesis by J. N. Collie near the turn of the 20th century. Collie proposed that certain natural compounds might arise from precursors containing repeated “ketide” (–CH2CO–) units which could then undergo subsequent condensations and other reactions typical of carbonyl compounds to produce some of the observed structures. Unfortunately, Collie’s work was more or less ignored and largely forgotten for nearly a half century, only to be reimagined and expanded in the middle of the century by A. J. Birch, another pioneer whose proposals met with considerable initial resistance. But unlike his predecessor, Birch ultimately prevailed by providing experimental results that supported a comprehensive theory of the biochemical origin of the group of compounds now universally known as “polyketide” natural products. This structurally diverse family includes some of the most useful medicinal agents now known to us, with many members possessing powerful antibacterial, antifungal, anticancer, immunosuppressant, and even cholesterol-lowering biological properties. As we see in Fig. 5.1, such structures range from the relatively simple to the exceedingly complex and may include large macrocyclic lactone rings (macrolides) such as erythromycin, polycyclic ethers such as monensin A, polycyclic structures which may be partly or mostly aromatic as in tetracycline, griseofulvin, or daunorubicin, or nonaromatic polycyclics such as tacrolimus and lovastatin. Some also contain noncyclic linear components that may be saturated, oxygenated, or unsaturated, as seen in different regions of amphotericin B which, like erythromycin, daunorubicin, and many other polyketides, also possesses an aglycone core which has been glycosylated with a carbohydrate component at a specific position. But in spite of this range of structures, many polyketide compounds share some common features that ultimately become more evident upon closer inspection; six-membered rings (either aromatic or nonaromatic) and multiple oxygens which tend to appear in a repeating 1,3-relationship to one another on both acyclic, cyclic, and aromatic structures.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 765
Author(s):  
Nan Hu ◽  
Lorenzo V. White ◽  
Ping Lan ◽  
Martin G. Banwell

The title alkaloids, often referred to collectively as crinines, are a prominent group of structurally distinct natural products with additional members being reported on a regular basis. As such, and because of their often notable biological properties, they have attracted attention as synthetic targets since the mid-1950s. Such efforts continue unabated and more recent studies on these alkaloids have focused on using them as vehicles for showcasing the utility of new synthetic methods. This review provides a comprehensive survey of the nearly seventy-year history of these synthetic endeavors.


2017 ◽  
Vol 89 (9) ◽  
pp. 1295-1304 ◽  
Author(s):  
Laure Guillotin ◽  
Perrine Cancellieri ◽  
Pierre Lafite ◽  
Ludovic Landemarre ◽  
Richard Daniellou

Abstractd-Glycopyranosyl glycerols are common natural products and exhibit strong biological properties, notably as moisturizing agents in cosmetics. Their chemical synthesis remains tedious thus decreasing their potential industrial and economic development, as well as the study of their structure-function relationships. In this work, the chemo-enzymatic synthesis of three enantiopure 3-O-(β-d-glycopyranosyl)-sn-glycerols was efficiently performed using an original glycosidase from Dictyoglomus thermophilum and their preservatives properties were assessed using a challenge test method. Amongst them, the 3-O-(β-d-glucopyranosyl)-sn-glycerol exhibited a specific anti-fungus activity.


Author(s):  
Rani Anjana ◽  
Kumar Sunil ◽  
Sharma Hitender ◽  
Khar R. K.

The phytosome technology was developed by Indena markedly enhancing the bioavailability of selected phytomedicines, by incorporating phospholipids into standardized plant extract, which improve their absorption and utilization. Phytosome are advanced form of herbal extract that shows better absorption profile than conventional herbal extract. The present review focus on the preparation and characterization techniques of phytosomes, merits and various landmarks in the field of phytosomes.


Planta Medica ◽  
2021 ◽  
Author(s):  
Jerald J. Nair ◽  
Johannes van Staden

AbstractOver 600 alkaloids have to date been identified in the plant family Amaryllidaceae. These have been arranged into as many as 15 different groups based on their characteristic structural features. The vast majority of studies on the biological properties of Amaryllidaceae alkaloids have probed their anticancer potential. While most efforts have focused on the major alkaloid groups, the volume and diversity afforded by the minor alkaloid groups have promoted their usefulness as targets for cancer cell line screening purposes. This survey is an in-depth review of such activities described for around 90 representatives from 10 minor alkaloid groups of the Amaryllidaceae. These have been evaluated against over 60 cell lines categorized into 18 different types of cancer. The montanine and cripowellin groups were identified as the most potent, with some in the latter demonstrating low nanomolar level antiproliferative activities. Despite their challenging molecular architectures, the minor alkaloid groups have allowed for facile adjustments to be made to their structures, thereby altering the size, geometry, and electronics of the targets available for structure-activity relationship studies. Nevertheless, it was seen with a regular frequency that the parent alkaloids were better cytotoxic agents than the corresponding semisynthetic derivatives. There has also been significant interest in how the minor alkaloid groups manifest their effects in cancer cells. Among the various targets and pathways in which they were seen to mediate, their ability to induce apoptosis in cancer cells is most appealing.


2021 ◽  
Vol 22 (14) ◽  
pp. 7410
Author(s):  
Matteo Mari ◽  
Debora Carrozza ◽  
Erika Ferrari ◽  
Mattia Asti

Curcumin is a natural occurring molecule that has aroused much interest among researchers over the years due to its pleiotropic set of biological properties. In the nuclear medicine field, radiolabelled curcumin and curcumin derivatives have been studied as potential radiotracers for the early diagnosis of Alzheimer’s disease and cancer. In the present review, the synthetic pathways, labelling methods and the preclinical investigations involving these radioactive compounds are treated. The studies entailed chemical modifications for enhancing curcumin stability, as well as its functionalisation for the labelling with several radiohalogens or metal radionuclides (fluorine-18, technetium-99m, gallium-68, etc.). Although some drawbacks have yet to be addressed, and none of the radiolabelled curcuminoids have so far achieved clinical application, the studies performed hitherto provide useful insights and lay the foundation for further developments.


2020 ◽  
Vol 49 (21) ◽  
pp. 7197-7209 ◽  
Author(s):  
Jin-Zhong Gu ◽  
Shi-Mao Wan ◽  
Marina V. Kirillova ◽  
Alexander M. Kirillov

2,5-Di(4-carboxylphenyl)nicotinic acid was explored as a novel building block for assembling nine metal(ii) coordination compounds; these were fully characterized and their structural features and functional properties were investigated.


2017 ◽  
Vol 37 (2) ◽  
pp. 51-70 ◽  
Author(s):  
Muhammad Iqbal ◽  
Saqib Ali ◽  
Ali Haider ◽  
Nasir Khalid

AbstractOrganotin complexes are being extensively studied and screened for their therapeutic potential. Although many recent advances and achievements in this field have been made, the exact mode of action of these complexes is yet to be unveiled. In the present review, an attempt has been made to correlate the therapeutic properties of organotin complexes with their structural features and the environment in which these interact with biological systems. The mechanism, various modes of interaction with biological systems, and physiological target sites of organotin complexes have been highlighted as well.


Sign in / Sign up

Export Citation Format

Share Document