scholarly journals From Natural Xanthones to Synthetic C-1 Aminated 3,4-Dioxygenated Xanthones as Optimized Antifouling Agents

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 638
Author(s):  
Diana I. S. P. Resende ◽  
Joana R. Almeida ◽  
Sandra Pereira ◽  
Alexandre Campos ◽  
Agostinho Lemos ◽  
...  

Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 μM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 μM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.

Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 5
Author(s):  
Daniela Pereira ◽  
Catarina Gonçalves ◽  
Beatriz T. Martins ◽  
Andreia Palmeira ◽  
Vitor Vasconcelos ◽  
...  

Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12518
Author(s):  
Charles Bronzo B. Farias ◽  
Rita de Cássia F. Soares da Silva ◽  
Fabíola Carolina G. Almeida ◽  
Valdemir A. Santos ◽  
Leonie A. Sarubbo

Industrial plants powered by heavy oil routinely experience problems with leaks in different parts of the system, such as during oil transport, the lubrication of equipment and mechanical failures. The surfactants, degreasing agents and solvents that make up detergents commonly used for cleaning grease-covered surfaces are synthetic, non-biodegradable and toxic, posing risks to the environment as well as the health of workers involved in the cleaning process. To address this problem, surfactant agents of a biodegradable nature and low toxicity, such as microbial surfactants, have been widely studied as an attractive, efficient solution to replace chemical surfactants in decontamination processes. In this work, the bacterial strains Pseudomonas cepacia CCT 6659, Pseudomonas aeruginosa UCP 0992, Pseudomonas aeruginosa ATCC 9027 and Pseudomonas aeruginosa ATCC 10145 were evaluated as biosurfactant producers in media containing different combinations and types of substrates and under different culture conditions. The biosurfactant produced by P. aeruginosa ATCC 10145 cultivated in a mineral medium composed of 5.0% glycerol and 2.0% glucose for 96 h was selected to formulate a biodetergent capable of removing heavy oil. The biosurfactant was able to reduce the surface tension of the medium to 26.40 mN/m, with a yield of approximately 12.00 g/L and a critical micelle concentration of 60.00 mg/L. The biosurfactant emulsified 97.40% and dispersed 98.00% of the motor oil. The detergent formulated with the biosurfactant also exhibited low toxicity in tests involving the microcrustacean Artemia salina and seeds of the vegetable Brassica oleracea. The detergent was compared to commercial formulations and removed 100% of the Special B1 Fuel Oil (OCB1) from different contaminated surfaces, demonstrating potential as a novel green remover with industrial applications.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 7
Author(s):  
Kyriakos C. Prousis ◽  
Stefanos Kikionis ◽  
Efstathia Ioannou ◽  
Silvia Morgana ◽  
Marco Faimali ◽  
...  

Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.


Author(s):  
David Willetts

Universities have a crucial role in the modern world. In England, entrance to universities is by nation-wide competition which means English universities have an exceptional influence on schools--a striking theme of the book. This important book first investigates the university as an institution and then tracks the individual on their journey to and through university. In A University Education, David Willetts presents a compelling case for the ongoing importance of the university, both as one of the great institutions of modern society and as a transformational experience for the individual. The book also makes illuminating comparisons with higher education in other countries, especially the US and Germany. Drawing on his experience as UK Minister for Universities and Science from 2010 to 2014, the author offers a powerful account of the value of higher education and the case for more expansion. He covers controversial issues in which he was involved from access for disadvantaged students to the introduction of L9,000 fees. The final section addresses some of the big questions for the future, such as the the relationship between universities and business, especially in promoting innovation.. He argues that the two great contemporary trends of globalisation and technological innovation will both change the university significantly. This is an authoritative account of English universities setting them for the first time in their new legal and regulatory framework.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 542
Author(s):  
Gustavo Penteado Battesini Carretero ◽  
Greice Kelle Viegas Saraiva ◽  
Magali Aparecida Rodrigues ◽  
Sumika Kiyota ◽  
Marcelo Porto Bemquerer ◽  
...  

In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2180
Author(s):  
Sana Javaid ◽  
Nasir M. Ahmad ◽  
Azhar Mahmood ◽  
Habib Nasir ◽  
Mudassir Iqbal ◽  
...  

The objective of the present study was to achieve the successful encapsulation of a therapeutic agent to achieve antifouling functionality regarding biomedical applications. Considering nanotechnology, drug-loaded polycaprolactone (PCL)-based nanoparticles were prepared using a nano-precipitation technique by optimizing various process parameters. The resultant nano-formulations were investigated for in vitro drug release and antifouling applications. The prepared particles were characterized in terms of surface morphology and surface properties. Optimized blank and drug-loaded nanoparticles had an average size of 200 nm and 216 nm, respectively, with associated charges of −16.8 mV and −11.2 mV. Studies of the in vitro release of drug were carried out, which showed sustained release at two different pH, 5.5 and 7.4 Antifouling activity was observed against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The zone of inhibition of the optimized polymeric drug-loaded nanoparticle F-25 against both strains were compared with the pure drug. The gradual pH-responsive release of antibiotics from the biodegradable polymeric nanoparticles could significantly increase the efficiency and pharmacokinetics of the drug as compared to the pure drug. The acquired data significantly noted that the resultant nano-encapsulation of antifouling functionality could be a promising candidate for topical drug delivery systems and skin applications.


Paleobiology ◽  
2021 ◽  
pp. 1-21
Author(s):  
Mariana Viglino ◽  
Maximiliano Gaetán ◽  
Mónica R. Buono ◽  
R. Ewan Fordyce ◽  
Travis Park

Abstract The inner ear of the two higher clades of modern cetaceans (Neoceti) is highly adapted for hearing infrasonic (mysticetes) or ultrasonic (odontocetes) frequencies. Within odontocetes, Platanistoidea comprises a single extant riverine representative, Platanista gangetica, and a diversity of mainly extinct marine species from the late Oligocene onward. Recent studies drawing on features including the disparate tympanoperiotic have not yet provided a consensus phylogenetic hypothesis for platanistoids. Further, cochlear morphology and evolutionary patterns have never been reported. Here, we describe for the first time the inner ear morphology of late Oligocene–early Miocene extinct marine platanistoids and their evolutionary patterns. We initially hypothesized that extinct marine platanistoids lacked a specialized inner ear like P. gangetica and thus, their morphology and inferred hearing abilities were more similar to those of pelagic odontocetes. Our results reveal there is no “typical” platanistoid cochlear type, as the group displays a disparate range of cochlear anatomies, but all are consistent with high-frequency hearing. Stem odontocete Prosqualodon australis and platanistoid Otekaikea huata present a tympanal recess in their cochlea, of yet uncertain function in the hearing mechanism in cetaceans. The more basal morphology of Aondelphis talen indicates it had lower high-frequency hearing than other platanistoids. Finally, Platanista has the most derived cochlear morphology, adding to evidence that it is an outlier within the group and consistent with a >9-Myr-long separation from its sister genus Zarhachis. The evolution of a singular sound production morphology within Platanistidae may have facilitated the survival of Platanista to the present day.


Author(s):  
Zhihua Zhang ◽  
Andy Jones ◽  
M. James C. Crabbe

Purpose Currently, negotiation on global carbon emissions reduction is very difficult owing to lack of international willingness. In response, geoengineering (climate engineering) strategies are proposed to artificially cool the planet. Meanwhile, as the harbor around one-third of all described marine species, coral reefs are the most sensitive ecosystem on the planet to climate change. However, until now, there is no quantitative assessment on the impacts of geoengineering on coral reefs. This study aims to model the impacts of stratospheric aerosol geoengineering on coral reefs. Design/methodology/approach The HadGEM2-ES climate model is used to model and evaluate the impacts of stratospheric aerosol geoengineering on coral reefs. Findings This study shows that (1) stratospheric aerosol geoengineering could significantly mitigate future coral bleaching throughout the Caribbean Sea; (2) Changes in downward solar irradiation, sea level rise and sea surface temperature caused by geoengineering implementation should have very little impacts on coral reefs; (3) Although geoengineering would prolong the return period of future hurricanes, this may still be too short to ensure coral recruitment and survival after hurricane damage. Originality/value This is the first time internationally to quantitatively assess the impacts of geoengineering on coral reefs.


2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


2006 ◽  
Vol 27 (5) ◽  
pp. 1859-1867 ◽  
Author(s):  
Ritu Kulshreshtha ◽  
Manuela Ferracin ◽  
Sylwia E. Wojcik ◽  
Ramiro Garzon ◽  
Hansjuerg Alder ◽  
...  

ABSTRACT Recent research has identified critical roles for microRNAs in a large number of cellular processes, including tumorigenic transformation. While significant progress has been made towards understanding the mechanisms of gene regulation by microRNAs, much less is known about factors affecting the expression of these noncoding transcripts. Here, we demonstrate for the first time a functional link between hypoxia, a well-documented tumor microenvironment factor, and microRNA expression. Microarray-based expression profiles revealed that a specific spectrum of microRNAs (including miR-23, -24, -26, -27, -103, -107, -181, -210, and -213) is induced in response to low oxygen, at least some via a hypoxia-inducible-factor-dependent mechanism. Select members of this group (miR-26, -107, and -210) decrease proapoptotic signaling in a hypoxic environment, suggesting an impact of these transcripts on tumor formation. Interestingly, the vast majority of hypoxia-induced microRNAs are also overexpressed in a variety of human tumors.


Sign in / Sign up

Export Citation Format

Share Document