scholarly journals Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius

Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 7
Author(s):  
Kyriakos C. Prousis ◽  
Stefanos Kikionis ◽  
Efstathia Ioannou ◽  
Silvia Morgana ◽  
Marco Faimali ◽  
...  

Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 638
Author(s):  
Diana I. S. P. Resende ◽  
Joana R. Almeida ◽  
Sandra Pereira ◽  
Alexandre Campos ◽  
Agostinho Lemos ◽  
...  

Biofouling, which occurs when certain marine species attach and accumulate in artificial submerged structures, represents a serious economic and environmental issue worldwide. The discovery of new non-toxic and eco-friendly antifouling systems to control or prevent biofouling is, therefore, a practical and urgent need. In this work, the antifouling activity of a series of 24 xanthones, with chemical similarities to natural products, was exploited. Nine (1, 2, 4, 6, 8, 16, 19, 21, and 23) of the tested xanthones presented highly significant anti-settlement responses at 50 μM against the settlement of mussel Mytilus galloprovincialis larvae and low toxicity to this macrofouling species. Xanthones 21 and 23 emerged as the most effective larval settlement inhibitors (EC50 = 7.28 and 3.57 µM, respectively). Additionally, xanthone 23 exhibited a therapeutic ratio (LC50/EC50) > 15, as required by the US Navy program attesting its suitability as natural antifouling agents. From the nine tested xanthones, none of the compounds were found to significantly inhibit the growth of the marine biofilm-forming bacterial strains tested. Xanthones 4, 6, 8, 16, 19, 21, and 23 were found to be non-toxic to the marine non-target species Artemia salina (<10% mortality at 50 μM). Insights on the antifouling mode of action of the hit xanthones 21 and 23 suggest that these two compounds affected similar molecular targets and cellular processes in mussel larvae, including that related to mussel adhesion capacity. This work exposes for the first time the relevance of C-1 aminated xanthones with a 3,4-dioxygenated pattern of substitution as new non-toxic products to prevent marine biofouling.


Marine Drugs ◽  
2020 ◽  
Vol 19 (1) ◽  
pp. 5
Author(s):  
Daniela Pereira ◽  
Catarina Gonçalves ◽  
Beatriz T. Martins ◽  
Andreia Palmeira ◽  
Vitor Vasconcelos ◽  
...  

Over the last decades, antifouling coatings containing biocidal compounds as active ingredients were used to prevent biofouling, and eco-friendly alternatives are needed. Previous research from our group showed that polymethoxylated chalcones and glycosylated flavones obtained by synthesis displayed antifouling activity with low toxicity. In this work, ten new polymethoxylated flavones and chalcones were synthesized for the first time, including eight with a triazole moiety. Eight known flavones and chalcones were also synthesized and tested in order to construct a quantitative structure-activity relationship (QSAR) model for these compounds. Three different antifouling profiles were found: three compounds (1b, 11a and 11b) exhibited anti-settlement activity against a macrofouling species (Mytilus galloprovincialis), two compounds (6a and 6b) exhibited inhibitory activity against the biofilm-forming marine bacteria Roseobacter litoralis and one compound (7b) exhibited activity against both mussel larvae and microalgae Navicula sp. Hydrogen bonding acceptor ability of the molecule was the most significant descriptor contributing positively to the mussel larvae anti-settlement activity and, in fact, the triazolyl glycosylated chalcone 7b was the most potent compound against this species. The most promising compounds were not toxic to Artemia salina, highlighting the importance of pursuing the development of new synthetic antifouling agents as an ecofriendly and sustainable alternative for the marine industry.


2019 ◽  
Vol 29 (23) ◽  
pp. 1808556 ◽  
Author(s):  
Zhen‐Xing Wang ◽  
Chun‐Yuan Chen ◽  
Yang Wang ◽  
Fu‐Xing‐Zi Li ◽  
Jie Huang ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 489
Author(s):  
Cátia Vilas-Boas ◽  
Francisca Carvalhal ◽  
Beatriz Pereira ◽  
Sílvia Carvalho ◽  
Emília Sousa ◽  
...  

Marine biofouling represents a global economic and ecological challenge and few eco-friendly antifouling agents are available. The aim of this work was to establish the proof of concept that a recently synthesized nature-inspired compound (gallic acid persulfate, GAP) can act as an eco-friendly and effective antifoulant when immobilized in coatings through a non-release strategy, promoting a long-lasting antifouling effect. The synthesis of GAP was optimized to provide quantitative yields. GAP water solubility was assessed, showing values higher than 1000 mg/mL. GAP was found to be stable in sterilized natural seawater with a half-life (DT50) of 7 months. GAP was immobilized into several commercial coatings, exhibiting high compatibility with different polymeric matrices. Leaching assays of polydimethylsiloxane and polyurethane-based marine coatings containing GAP confirmed that the chemical immobilization of GAP was successful, since releases up to fivefold lower than the conventional releasing systems of polyurethane-based marine coatings were observed. Furthermore, coatings containing immobilized GAP exhibited the most auspicious anti-settlement effect against Mytilus galloprovincialis larvae for the maximum exposure period (40 h) in laboratory trials. Overall, GAP promises to be an agent capable of improving the antifouling activity of several commercial marine coatings with desirable environmental properties.


Marine Drugs ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 63 ◽  
Author(s):  
Florbela Pereira ◽  
Joana R. Almeida ◽  
Marisa Paulino ◽  
Inês R. Grilo ◽  
Helena Macedo ◽  
...  

The undesired attachment of micro and macroorganisms on water-immersed surfaces, known as marine biofouling, results in severe prevention and maintenance costs (billions €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructures. To date, there are no sustainable, cost-effective and environmentally safe solutions to address this challenging phenomenon. Therefore, we investigated the antifouling activity of napyradiomycin derivatives that were isolated from actinomycetes from ocean sediments collected off the Madeira Archipelago. Our results revealed that napyradiomycins inhibited ≥80% of the marine biofilm-forming bacteria assayed, as well as the settlement of Mytilus galloprovincialis larvae (EC50 < 5 µg/ml and LC50/EC50 >15), without viability impairment. In silico prediction of toxicity end points are of the same order of magnitude of standard approved drugs and biocides. Altogether, napyradiomycins disclosed bioactivity against marine micro and macrofouling organisms, and non-toxic effects towards the studied species, displaying potential to be used in the development of antifouling products.


2021 ◽  
Author(s):  
Alina Nicheperovich ◽  
Adrian M Altenhoff ◽  
Christophe Dessimoz ◽  
Sina Majidian

The conservation of pathways and genes across species has allowed scientists to use non-human model organisms to gain a deeper understanding of human biology. However, the use of traditional model systems such as mice, rats, and zebrafish is costly, time-consuming and increasingly raises ethical concerns, which highlights the need to search for less complex model organisms. Existing tools only focus on the few well-studied model systems, most of which are higher animals. To address these issues, we have developed Orthologous Matrix and Model Organisms, a software and a website that provide the user with the best simple organism for research into a biological process of interest based on orthologous relationships between the human and the species. The outputs provided by the database were supported by a systematic literature review.


2007 ◽  
Vol 44 (2) ◽  
pp. 57-61 ◽  
Author(s):  
Altintas Nuray ◽  
S. Orenay ◽  
E. Reyhan ◽  
M. Turk ◽  
M. Asci ◽  
...  

AbstractCystic echinococcosis (CE) due to Echinococcus granulosus is one of the most important helminthic diseases in Turkey where it constitutes a public health and economic problems. Its mean annual incidence in humans is 4.4/100 000 and the prevalence of the tapeworm agent in domestic animals ranges from 11.2 to 50.7 %. Since 1980s, albendazole has been used for treatment of the disease, and this benzimidazole drug has been considered to be of relatively low toxicity. However, prolonged albendazole therapy of CE became to be a common practice, and data on possible genotoxic effects of the medication in humans are lacking. This study has concerned 17 women and 11 men, in total 28 patients with liver cystic hydatid complaints, who were administered albendazole (15 mg/kg) preoperatively (2 weeks) and postoperatively (6 months). Genotoxic effects of albendazole were searched using Sister Chromatid Exchange (SCE), mitotic index (MI) and chromosomal aberations (CAs) methods, comparing lymphocyte chromosomes of treated patients and a control group of healthy individuals. The results indicated a significant increase of SCE frequencies and decrease of MI in the treated group (p < 0.001). Regarding CAs, any difference between the groups was not determined.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 32
Author(s):  
Maxence Quémener ◽  
Stefanos Kikionis ◽  
Marilyne Fauchon ◽  
Yannick Toueix ◽  
Fanny Aulanier ◽  
...  

Nowadays, biofouling is responsible for enormous economic losses in the maritime sector, and its treatment with conventional antifouling paints is causing significant problems to the environment. Biomimetism and green chemistry approaches are very promising research strategies for the discovery of new antifouling compounds. This study focused on the red alga Sphaerococcus coronopifolius, which is known as a producer of bioactive secondary metabolites. Fifteen compounds, including bromosphaerol (1), were tested against key marine biofoulers (five marine bacteria and three microalgae) and two enzymes associated with the adhesion process in macroalgae and invertebrates. Each metabolite presented antifouling activity against at least one organism/enzyme. This investigation also revealed that two compounds, sphaerococcinol A (4) and 14R-hydroxy-13,14-dihydro-sphaerococcinol A (5), were the most potent compounds without toxicity towards oyster larvae used as non-target organisms. These compounds are of high potential as they are active towards key biofoulers and could be produced by a cultivable alga, a fact that is important from the green chemistry point of view.


2013 ◽  
Vol 24 (16) ◽  
pp. 2515-2527 ◽  
Author(s):  
Takayuki Fujiwara ◽  
Kan Tanaka ◽  
Tsuneyoshi Kuroiwa ◽  
Tatsuya Hirano

Condensins are multisubunit complexes that play central roles in chromosome organization and segregation in eukaryotes. Many eukaryotic species have two different condensin complexes (condensins I and II), although some species, such as fungi, have condensin I only. Here we use the red alga Cyanidioschyzon merolae as a model organism because it represents the smallest and simplest organism that is predicted to possess both condensins I and II. We demonstrate that, despite the great evolutionary distance, spatiotemporal dynamics of condensins in C. merolae is strikingly similar to that observed in mammalian cells: condensin II is nuclear throughout the cell cycle, whereas condensin I appears on chromosomes only after the nuclear envelope partially dissolves at prometaphase. Unlike in mammalian cells, however, condensin II is confined to centromeres in metaphase, whereas condensin I distributes more broadly along arms. We firmly establish a targeted gene disruption technique in this organism and find, to our surprise, that condensin II is not essential for mitosis under laboratory growth conditions, although it plays a crucial role in facilitating sister centromere resolution in the presence of a microtubule drug. The results provide fundamental insights into the evolution of condensin-based chromosome architecture and dynamics.


Sign in / Sign up

Export Citation Format

Share Document