scholarly journals Micronutrients in Sepsis and COVID-19: A Narrative Review on What We Have Learned and What We Want to Know in Future Trials

Medicina ◽  
2021 ◽  
Vol 57 (5) ◽  
pp. 419
Author(s):  
Matteo Rossetti ◽  
Gennaro Martucci ◽  
Christina Starchl ◽  
Karin Amrein

Sepsis remains the leading cause of mortality in hospitalized patients, contributing to 1 in every 2–3 deaths. From a pathophysiological view, in the recent definition, sepsis has been defined as the result of a complex interaction between host response and the infecting organism, resulting in life-threatening organ dysfunction, depending on microcirculatory derangement, cellular hypoxia/dysoxia driven by hypotension and, potentially, death. The high energy expenditure driven by a high metabolic state induced by the host response may rapidly lead to micronutrient depletion. This deficiency can result in alterations in normal energy homeostasis, free radical damage, and immune system derangement. In critically ill patients, micronutrients are still relegated to an ancillary role in the whole treatment, and always put in a second-line place or, frequently, neglected. Only some micronutrients have attracted the attention of a wider audience, and some trials, even large ones, have tested their use, with controversial results. The present review will address this topic, including the recent advancement in the study of vitamin D and protocols based on vitamin C and other micronutrients, to explore an update in the setting of sepsis, gain some new insights applicable to COVID-19 patients, and to contribute to a pathophysiological definition of the potential role of micronutrients that will be helpful in future dedicated trials.

2018 ◽  
Vol 31 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Justin B. Belsky ◽  
Charles R. Wira ◽  
Vinitha Jacob ◽  
John E. Sather ◽  
Patty J. Lee

AbstractSepsis is defined as the dysregulated host response to an infection resulting in life-threatening organ dysfunction. The metabolic demand from inefficiencies in anaerobic metabolism, mitochondrial and cellular dysfunction, increased cellular turnover, and free-radical damage result in the increased focus of micronutrients in sepsis as they play a pivotal role in these processes. In the present review, we will evaluate the potential role of micronutrients in sepsis, specifically, thiamine, l-carnitine, vitamin C, Se and vitamin D. Each micronutrient will be reviewed in a similar fashion, discussing its major role in normal physiology, suspected role in sepsis, use as a biomarker, discussion of the major basic science and human studies, and conclusion statement. Based on the current available data, we conclude that thiamine may be considered in all septic patients at risk for thiamine deficiency and l-carnitine and vitamin C to those in septic shock. Clinical trials are currently underway which may provide greater insight into the role of micronutrients in sepsis and validate standard utilisation.


2012 ◽  
Vol 1 (10) ◽  
pp. 79 ◽  
Author(s):  
G. Raja* ◽  
Ivvala Anand Shaker ◽  
Inampudi Sailaja ◽  
R. Swaminathan ◽  
S. Saleem Basha ◽  
...  

Natural antioxidants can protect the human body from free radicals and retard the progress of many chronic diseases as well as lipid oxidative rancidity in foods. The role of antioxidants has protected effect against free radical damage that may cause many diseases including cancer. Primary sources of naturally occurring antioxidants are known as whole grains, fruits, and vegetables. Several studies suggest that regular consumption of nuts, mostly walnuts, may have beneficial effects against oxidative stress mediated diseases such as cardiovascular disease and cancer. The role of antioxidants has attracted much interest with respect to their protective effect against free radical damage that may cause many diseases including cancer. Juglans regia L. (walnut) contains antioxidant compounds, which are thought to contribute to their biological properties. Polyphenols, flavonoids and flavonols concentrations and antioxidant activity of Leaves, Stems and Nuts extract of Juglans regia L. as evaluated using DPPH, ABTS, Nitric acid, hydroxyl and superoxide radical scavenging activity, lipid peroxidation and total oxidation activity were determined. The antioxidant activities of Leaves, Stems and Nuts extract of Juglans regia L. were concentration dependent in different experimental models and it was observed that free radicals were scavenged by the test compounds in all the models.


Author(s):  
D Özmen ◽  
I Mutaf ◽  
B Özmen ◽  
J Mentes ◽  
O Bayindir

This study aims to explore the role of reactive oxygen radicals in the genesis of diabetic cataract. Lipid peroxide (LPO) concentrations in senile ( n = 30) and diabetic ( n = 14) cataractous lenses, were determined as thiobarbituric acid-reactive substances (TBARS) by a method modified from Satoh and Yagi, and reduced glutathione (GSH) concentrations were measured according to Beutler. Lens LPO levels (mean, SD; nmol TBARS/g protein) were significantly higher in diabetics (107·54, 18·12) than senile cataractous subjects (53·54, 15·48) ( P < 0·0001). Lens GSH levels (mean, SD; nmol/g protein) showed no significant difference between diabetics (4·29, 2·05) and senile cataractous subjects (4·68, 3·12). These results suggest that free radical damage is more effective in the genesis of diabetic cataract than in senile cataract.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Ji ◽  
Jie Fan

Sepsis is life-threatening organ dysfunction caused by a dysregulated host response to infection. During the development and progression of sepsis, polymorphonuclear neutrophils (PMNs) are the most abundantly recruited innate immune cells at sites of infection, playing critical roles in the elimination of local infection and healing of the injury. PMN reverse migration (rM) describes the phenomenon in which PMNs migrate away from the inflammatory site back into the vasculature following the initial PMN infiltration. The functional role of PMN rM within inflammatory scenarios requires further exploration. Current evidence suggests that depending on the context, PMN rM can be both a protective response, by facilitating an efficient resolution to innate immune reaction, and also a tissue-damaging event. In this review, we provide an overview of current advancements in understanding the mechanism and roles of PMN rM in inflammation and sepsis. A comprehensive understanding of PMN rM may allow for the development of novel prophylactic and therapeutic strategies for sepsis.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Arthur Durand ◽  
Thibault Duburcq ◽  
Thibault Dekeyser ◽  
Remi Neviere ◽  
Michael Howsam ◽  
...  

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a leading cause of death worldwide, despite the development of various therapeutic strategies. Cardiac dysfunction, also referred to as septic cardiomyopathy, is a frequent and well-described complication of sepsis and associated with worse clinical outcomes. Recent research has increased our understanding of the role of mitochondrial dysfunction in the pathophysiology of septic cardiomyopathy. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 286 ◽  
Author(s):  
Andrew Teggert ◽  
Harish Datta ◽  
Zulfiqur Ali

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. In 2017, almost 50 million cases of sepsis were recorded worldwide and 11 million sepsis-related deaths were reported. Therefore, sepsis is the focus of intense research to better understand the complexities of sepsis response, particularly the twin underlying concepts of an initial hyper-immune response and a counter-immunological state of immunosuppression triggered by an invading pathogen. Diagnosis of sepsis remains a significant challenge. Prompt diagnosis is essential so that treatment can be instigated as early as possible to ensure the best outcome, as delay in treatment is associated with higher mortality. In order to address this diagnostic problem, use of a panel of biomarkers has been proposed as, due to the complexity of the sepsis response, no single marker is sufficient. This review provides background on the current understanding of sepsis in terms of its epidemiology, the evolution of the definition of sepsis, pathobiology and diagnosis and management. Candidate biomarkers of interest and how current and developing point-of-care testing approaches could be used to measure such biomarkers is discussed.


2003 ◽  
Vol 369 (3) ◽  
pp. 447-452 ◽  
Author(s):  
Sanjay GHOSH ◽  
Srikanta GOSWAMI ◽  
Samit ADHYA

Intracellular parasitic protozoans of the genus Leishmania depend for their survival on the elaboration of enzymic and other mechanisms for evading toxic free-radical damage inflicted by their phagocytic macrophage host. One such mechanism may involve superoxide dismutase (SOD), which detoxifies reactive superoxide radicals produced by activated macrophages, but the role of this enzyme in parasite survival has not yet been demonstrated. We have cloned a SOD gene from L. tropica and generated SOD-deficient parasites by expressing the corresponding antisense RNA from an episomal vector. Such parasites have enhanced sensitivity to menadione and hydrogen peroxide in axenic culture, and a markedly reduced survival in mouse macrophages. These results indicate that SOD is a major determinant of intracellular survival of Leishmania.


Cryobiology ◽  
1985 ◽  
Vol 22 (6) ◽  
pp. 614 ◽  
Author(s):  
B. Fuller ◽  
C. Green ◽  
G. Healing ◽  
S. Marley ◽  
S. Simpkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document