scholarly journals Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 844
Author(s):  
Mustafa Karabicici ◽  
Yagmur Azbazdar ◽  
Evin Iscan ◽  
Gunes Ozhan

Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components—specifically ligands, (co) receptors, and extracellular or membrane-associated modulators—to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt–receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.

Author(s):  
Yagmur Azbazdar ◽  
Mustafa Karabicici ◽  
Esra Erdal ◽  
Gunes Ozhan

Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.


2019 ◽  
Author(s):  
Wenzhe Ma ◽  
Maorong Chen ◽  
Hong Kang ◽  
Zachary Steinhart ◽  
Stephane Angers ◽  
...  

AbstractDvl (Dishevelled) is one of several essential non-enzymatic components of the Wnt signaling pathway. In most current models, Dvl forms complexes with Wnt ligand receptors, Fzd and LRP5/6 at the plasma membrane, which then recruits other components of the destruction complex leading to inactivation of β-catenin degradation. Although this model is widespread, direct evidence for this process is lacking. In this study, we tagged mEGFP to C-terminus of dishevlled2 gene using CRISPR/Cas9 induced homologous recombination and observed its dynamics directly at the single molecule level with Total Internal Reflection Fluorescence (TIRF) microscopy. We focused on two questions: 1) What is the native size and the dynamic features of membrane-associated Dvl complexes during Wnt pathway activation? 2) What controls the behavior of these complexes? We found that membrane bound Dvl2 is predominantly monomer in the absent of Wnt (mean size 1.10). Wnt3a stimulation leads to an increase in the total concentration of membrane-bound Dvl2 from 0.08/μm2 to 0.34/μm2. Wnt3a also leads to increased oligomerization which raises the weighted averaged mean size of Dvl2 complexes to 1.4; with 65% of Dvl still as monomers. The driving force for Dvl2 oligomerization is the increased concentration of Dvl2 at the membrane caused by increased affinity of Dvl2 for Fzd, the Dvl2 and Fzd binding is independent of LRP5/6. The oligomerized Dvl2 complexes have greatly increased dwell time, 2~3 minutes compared to less than 1 second for monomeric Dvl2. These properties make Dvl a unique scaffold dynamically changing its state of assembly and stability at the membrane in response to Wnt ligands.Significance StatementCanonical Wnt signaling is one of the most widely distributed pathways in metazoan development. Despite intense genetic and biochemical study for over 35 years, the major features of signaling across the plasma membrane are still poorly understood. Dishevelled serves as an essential bridge between the membrane receptors and downstream signaling components. Attempts to reconstruct the pathway and analyze its biochemical features in vitro have been hampered by Dishevelled’s tendency to aggregate in vitro and to form large aggregates of dubious significance in vivo. To obtain a molecular understanding of the role of Dvl in Wnt signaling, while circumventing these aggregation problems we have expressed a fluorescent tagged Dishevelled in cells at their physiological concentration and quantified the size distribution of Dishevelled before and after Wnt treatment. We found that limited oligomerization in response to the Wnt ligand is very dynamic and provides a key step of signal transduction.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Garima Sharma ◽  
Ashish Ranjan Sharma ◽  
Eun-Min Seo ◽  
Ju-Suk Nam

The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively.


2018 ◽  
Author(s):  
Karen Linnemannstöns ◽  
Pradhipa Karuna M ◽  
Leonie Witte ◽  
Jeanette Clarissa Kittel ◽  
Adi Danieli ◽  
...  

Protein trafficking in the secretory pathway, for example the secretion of Wnt proteins, requires tight regulation. These ligands activate Wnt signaling pathways and are crucially involved in development and disease. Wnt is transported to the plasma membrane by its cargo receptor Evi, where Wnt/Evi complexes are endocytosed and sorted onto exosomes for long-range secretion. However, the trafficking steps within the endosomal compartment are not fully understood. The promiscuous SNARE Ykt6 folds into an auto-inhibiting conformation in the cytosol, but a portion associates with membranes by its farnesylated and palmitoylated C-terminus. Here, we demonstrate that membrane detachment of Ykt6 is essential for exosomal Wnt secretion. We identified conserved phosphorylation sites within the SNARE domain of Ykt6, which block Ykt6 cycling from the membrane to the cytosol. In Drosophila, Ykt6-RNAi mediated block of Wg secretion is rescued by wildtype but not phosphomimicking Ykt6. The latter accumulates at membranes, while wildtype Ykt6 regulates Wnt trafficking between the plasma membrane and multivesicular bodies. Taken together, we show that a regulatory switch in Ykt6 fine-tunes sorting of Wnts in endosomes.


2019 ◽  
Vol 20 (21) ◽  
pp. 5391 ◽  
Author(s):  
Wörthmüller ◽  
Salicio ◽  
Oberson ◽  
Blum ◽  
Schwaller

Malignant mesothelioma (MM) is an aggressive asbestos-linked neoplasm, characterized by dysregulation of signaling pathways. Due to intrinsic or acquired chemoresistance, MM treatment options remain limited. Calretinin is a Ca2+-binding protein expressed during MM tumorigenesis that activates the FAK signaling pathway, promoting invasion and epithelial-to-mesenchymal transition. Constitutive calretinin downregulation decreases MM cells’ growth and survival, and impairs tumor formation in vivo. In order to evaluate early molecular events occurring during calretinin downregulation, we generated a tightly controlled IPTG-inducible expression system to modulate calretinin levels in vitro. Calretinin downregulation significantly reduced viability and proliferation of MM cells, attenuated FAK signaling and reduced the invasive phenotype of surviving cells. Importantly, surviving cells showed a higher resistance to cisplatin due to increased Wnt signaling. This resistance was abrogated by the Wnt signaling pathway inhibitor 3289-8625. In various MM cell lines and regardless of calretinin expression levels, blocking of FAK signaling activated the Wnt signaling pathway and vice versa. Thus, blocking both pathways had the strongest impact on MM cell proliferation and survival. Chemoresistance mechanisms in MM cells have resulted in a failure of single-agent therapies. Targeting of multiple components of key signaling pathways, including Wnt signaling, might be the future method-of-choice to treat MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2742-2742 ◽  
Author(s):  
Nicola Giuliani ◽  
Simona Colla ◽  
Paola Storti ◽  
Gaetano Donofrio ◽  
Marina Bolzoni ◽  
...  

Abstract Osteoblast suppression is the hallmark of Multiple Myeloma (MM) osteolytic bone lesions mainly due to the capacity of MM cells to inhibit the osteogenic differentiation of bone marrow (BM) mesenchymal cells (MSC). Many evidences suggest that Wnt signaling is critically involved in the regulation of osteoblast formation. Recently, in murine osteoprogenitor cells and in MM mouse models it has been shown that activation of canonical Wnt pathway stimulate osteoblast formation and blunts MM-induced bone destruction. In this study we have investigated whether modulation of both canonical and noncanonical Wnt signaling pathway may affect osteogenic differentiation of human MSC and counterbalance the suppressive effect of MM cells. First we checked the potential expression of Wnt activators and inhibitors by human MSC and osteoprogenitor cells (PreOB) by gene arrays. We found that both cells expressed the activator of non-canonical Wnt pathways Wnt5a but lack of express the main activators of canonical Wnt signaling as Wnt1, Wnt3a and Wnt8. The presence of the Wnt5a receptor FZD2 and FZD5 was also detected in both cells as well as that of FZD3, FZD6 and FDZ7 and the Wnt canonical co-receptors LRP5 and LRP6. On the other hand we found that both inhibitors of canonical and non-canonical Wnt pathways DKK-1 and sFRP-1 were expressed by MSC. Secondly, activation of either canonical or non-canonical Wnt signaling pathway by Wnt3a and Wnt5a treatment respectively was performed in human MSC to evaluate the effect on osteogenic differentiation and the expression of osteoblast related markers (Collagen I, Osteocalcin and Alkaline Phosphatase). We found that Wnt5a treatment but not Wnt3a significantly increased the early osteogenic differentiation and the expression of alkaline phosphatase in MSC. Consistently in a co-culture system with MM cells Wnt5a treatment blunted, at least in part, the inhibitory effect of MM cells on alkaline phosphatase expression by MSC and PreOB. To go further inside, we evaluated in both primary human BM MSC and the human MSC cell line HS-5 the effect of either the activation of non-canonical Wnt signaling by Wnt5a overexpression using a lentivirus vector or the Wnt5a suppression using siRNA. Wnt5a over-expression in MSC induced the activation of Wnt/Ca++ non-canonical pathway as demonstrated by the increase of Wnt5a secretion and phospho-PKC expression detected by westernblot analysis. Consequently to non-canonical Wnt signal activation we found a significant increase of alkaline phosphatase expression by MSC cells as well as of their osteogenic differentiation. Interestingly, analyzing the gene expression profile by microarray, we found that Wnt5a overexpression in MSC also affects the expression of chemokines, inflammatory cytokines and pro-angiogenic molecules. In conclusion our data indicate that activation of non-canonical Wnt signal pathway may represent a potential target in MM microenvironment to counterbalance the inhibitory effect of MM cells on osteogenic differentiation of human MSC.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jianxing Zeng ◽  
Yingying Jing ◽  
Qionglan Wu ◽  
Jinhua Zeng ◽  
Lixin Wei ◽  
...  

The molecular mechanisms regulating differentiation of hepatic progenitor cells (HPCs), which play pivotal roles in liver regeneration and development, remain obscure. Autophagy and Wnt signaling pathways regulate the development and differentiation of stem cells in various organs. However, the roles of autophagy and Wnt signaling pathways in hepatic differentiation of HPCs are not well understood. Here, we describe the effects of autophagy and Wnt signaling pathways during hepatic differentiation of HPCs. We used a well-established rat hepatic progenitor cell line called WB-F344, which was treated with differentiation medium to promote differentiation of WB-F344 cells along the hepatic phenotype. Firstly, autophagy was highly activated in HPCs and gradually decreased during hepatic differentiation of HPCs. Induction of autophagy by rapamycin or starvation suppressed hepatic differentiation of HPCs. Secondly, Wnt3a signaling pathway was downregulated, and Wnt5a signaling pathway was upregulated in hepatic differentiation of HPCs. At last, Wnt3a signaling pathway was enhanced, and Wnt5a signaling pathway was inhibited by activation of autophagy during hepatic differentiation of HPCs. In summary, these results demonstrate that autophagy regulates hepatic differentiation of hepatic progenitor cells through Wnt signaling pathway.


1997 ◽  
Vol 110 (24) ◽  
pp. 3011-3018 ◽  
Author(s):  
A. Bretscher ◽  
D. Reczek ◽  
M. Berryman

The cortical cytoskeleton of eucaryotic cells provides structural support to the plasma membrane and also contributes to dynamic processes such as endocytosis, exocytosis, and transmembrane signaling pathways. The ERM (ezrin-radixin-moesin) family of proteins, of which ezrin is the best studied member, play structural and regulatory roles in the assembly and stabilization of specialized plasma membrane domains. Ezrin and related molecules are concentrated in surface projections such as microvilli and membrane ruffles where they link the microfilaments to the membrane. The present knowledge about ezrin is discussed from an historical perspective. Both biochemical and cell biological studies have revealed that ezrin can exist in a dormant conformation that requires activation to expose otherwise masked association sites. Current results indicate that activated ezrin monomers or head-to-tail oligomers associate directly with F-actin through a domain in its C terminus, and with the membrane through its N-terminal domain. The association of ezrin with transmembrane proteins can be direct, as in the case of CD44, or indirect through EBP50. Other binding partners, including the regulatory subunit of protein kinase A and rho-GDI, suggest that ezrin is an integral component of these signaling pathways. Although the membrane-cytoskeletal linking function is clear, further studies are necessary to reveal how the activation of ezrin and its association with different binding partners is regulated.


2009 ◽  
Author(s):  
Viviana Váazquez‐Rivera ◽  
Bernadette Sosa‐García ◽  
Nismaliry Martínez‐García ◽  
Pedro Santiago‐Cardona

1996 ◽  
Vol 134 (6) ◽  
pp. 1427-1439 ◽  
Author(s):  
L Pierini ◽  
D Holowka ◽  
B Baird

Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6-micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand-coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells.


Sign in / Sign up

Export Citation Format

Share Document