scholarly journals Formation of Water-Channel by Propylene Glycol into Polymer for Porous Materials

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 881
Author(s):  
Seong Ho Hong ◽  
Younghyun Cho ◽  
Sang Wook Kang

In this study, a porous membrane with a cellulose acetate (CA) matrix was fabricated using propylene glycol with a water pressure treatment without a metal salt as an additive. The water pressure treatment of the fabricated CA membrane with propylene glycol yielded nanopores. The nanopores were formed as the additives in the CA chains led to plasticization. The weakened chains of the parts where the plasticization occurred were broken by the water pressure, which generated the pores. Compared to the previous study with glycerin as an additive, the size of the hydration region was controlled by the number of hydrophilic functional groups. When water pressure was applied to the CA membrane containing propylene glycol as an additive, the hydration area was small, so it was effective to control the pore size and the number of nano pores than glycerin. In addition, the number of nanopores and pore size could be easily adjusted by the water pressure. The porosity of the membrane was increased owing to the trace amount of propylene glycol, confirmed by scanning electron microscopy (SEM) and porosimetry. The interaction between the CA and propylene glycol was verified by Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Consequently, it was the optimum composition to generate pores at the CA/propylene glycol 1:0.2 ratio, and porosity of 69.7% and average pore diameter of 300 nm was confirmed. Since it is a membrane with high porosity and nano sized pores, it is expected to be applied in various fields.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jianqing Gong ◽  
Ke Li

Relatively high drying shrinkage and permeability were two of the major challenges associated with foam concrete (FC), primarily due to its high porosity nature. This study was aimed at reducing the drying shrinkage and improving the impermeability of FC by blending and modifying it with epoxy resin (EP). Extensive laboratory testing yielded an optimum content of 4.0% EP, corresponding to a minimum drying shrinkage rate of 1.47 mm/m, which was 48% lower than that of the unmodified FC. At this optimum dosage of 4.0% EP, the permeability pressure was at a maximum level of 1.4 MPa, whereas the permeability coefficient was at its lowest value of 0.75 × 10−9  mm/h. Internal pore structure and EP distribution were characterized using the scanning electron microscopy and indicated that a microgrid structure of the FC was formed internally, featuring an increase in the number of pores, a reduction in the average pore size, and a uniform pore size distribution. Similarly, surface energy measurements using the tensiometry method yielded maximum surface energy values at 4.0% EP content, which could be used to explain the reduced drying shrinkage and the enhanced impermeability characteristics of the modified FC.


Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 51 ◽  
Author(s):  
Nazely Diban ◽  
Beatriz Gómez-Ruiz ◽  
María Lázaro-Díez ◽  
Jose Ramos-Vivas ◽  
Inmaculada Ortiz ◽  
...  

High porosity and mass transport properties of microfiltration polymeric membranes benefit nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (approximately 0.7 µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case studies. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (approximately 0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (approximately 1.70 µm) and surface porosity would incur important internal protein fouling that could not be prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.


Author(s):  
Nazely Diban ◽  
Beatriz Gomez-Ruiz ◽  
Maria Lázaro-Díez ◽  
Jose Ramos-Vivas ◽  
Inmaculada Ortiz ◽  
...  

High porosity and mass transport properties of microfiltration polymeric membranes benefits nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (~0.7µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case study. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (~0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (~1.70µm) and surface porosity would incur in important internal protein fouling that could not been prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.


2011 ◽  
Vol 480-481 ◽  
pp. 159-164 ◽  
Author(s):  
Li Qin Wang ◽  
Xiang Ni Yang ◽  
Yang Han ◽  
Ning Yu ◽  
Xiu Li Zhao

The Y/MCM-41 composite molecular sieves were synthesized in the method of hydrothermal crystallization with cetyltrimethylammonium bromide (CTMABr) as the template agent. The as-prepared composite molecular sieves were characterized by the means of X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), the thermogravimetric and differential thermal analysis (TG-DTA) and the nitrogen adsorption test. The experimental results were shown as follows: the Y/MCM-41 composite molecular sieves kept properties of Y-zeolites and MCM-41 molecular sieves. In the XRD and FT-IR spectra, it can be found both characteristic peaks of Y-zeolites and MCM-41 molecular sieves. The pore size distribution plot indicated that the Y/MCM-41composite molecular sieves had micro-mesoporous structure, and the average pore size were about 1.5 nm and 15 nm. The decomposition temperature of the template agent was at 320 °C, and the calcined temperature of Y-zeolites was at about 560 °C. There showed an endothermic process constantly in the DTA curve, and there was little mass loss in the TG curve, indicating the obtained Y/MCM-41 composite molecular sieves had higher thermal stability.


2014 ◽  
Vol 3 (2) ◽  
Author(s):  
Prima Astuti Handayani ◽  
Eko Nurjanah ◽  
Wara Dyah Pita Rengga

<p>Sekam padi merupakan salah satu sumber penghasil silika terbesar, berpotensi sebagai bahan pembuatan silika gel. Abu sekam padi mengandung silika sebanyak 87%-97% berat kering. Sintesis silika gel dari abu sekam padi dilakukan dengan mereaksikan abu sekam padi menggunakan larutan NaOH 1N pada suhu 800C selama 1 jam dan dilanjutkan dengan penambahan larutan asam hingga pH=7. Gel yang dihasilkan selanjutnya didiamkan selama 18 jam kemudian dikeringkan pada suhu dikeringkan menggunakan oven pada suhu 800C hingga beratnya konstan. Hasil percobaan diperoleh bahwa silika gel dengan penambahan CH3COOH menghasilkan yield yang lebih besar dibandingkan penambahan HCl. Berdasarkan analisis FT-IR silika gel yang diperoleh memiliki gugus Si-O-Si dan gugus Si-OH. Silika gel dengan penambahan HCl memiliki surface area sebesar 65,558 m2/g, total pore volume 0,1935 cc/g, dan average pore size sebesar 59,0196 Å. Sedangkan silika gel dengan penambahan CH3COOH memiliki surface area sebesar 9,685 m2/g, total pore volume 0,02118 cc/g, dan average pore size sebesar 43,7357Å. Silika gel dengan penambahan<br />CH3COOH memiliki kemampuan menyerap kelembaban udara yang lebih baik dibanding silika gel dengan penambahan HCl.</p><p> </p><p>Rice hull ash (RHA) is one of the biggest source of silica, potential for sintesis silica gel. RHA contains silica as many as 87 % -97 %. Synthesis of silica gel from rice hull ash was done by reaction using NaOH solution at temperature 800C for 1 hour and followed by the addition of an acid solution until pH=7. The gel were rested with time aging 18 hour, and then dried using oven at temperature 800C until constant weigh. The results obtained that the silica gel with the addition of CH3COOH produce higher yields than the addition of HCl. Based on FT-IR analysis, silica gel has a group of silanol (Si-`OH) and siloxan (Si-O-Si) group. Silica gel with the addition of HCl has a surface area 65,558 m2/g, a total pore volume 0,1935 cc/g, and average pore size 59,0196 Å. While the silica gel with the addition of CH3COOH has a surface area 9.685 m2/g, a total pore volume 0,02118 cc/g, and average pore size 43,7357 Å. Silica gel with the addition of CH3COOH<br />has the ability to absorb humidity better than silica gel with the addition of HCl.</p>


MRS Advances ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 2317-2330
Author(s):  
Marc Behl ◽  
Muhammad Yasar Razzaq ◽  
Magdalena Mazurek-Budzyńska ◽  
Andreas Lendlein

AbstractPorous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2 (scCO2) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100–800 μm along with a porosity in the range from (19 ± 3 to 61 ± 6)% and interconnectivity of up to 82%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO2 foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.


2021 ◽  
Author(s):  
Hye Ji Lee ◽  
SANG WOOK KANG

Abstract In this study, calcium oxide (CaO) was used as an additive to form pores in a cellulose acetate (CA) membrane and at the same time improve the thermal stability of the cellulose acetate membrane. When the CA/CaO membrane was exposed to water pressure, the solvent was removed from the CA matrix area plasticized by the CaO particle size and water channels were formed. In addition, the high melting point of CaO and its bonding with the carbonyl group of CA caused a crosslinking effect. We succeeded in membrane synthesis with a high porosity of 73.1% and flux data of 95.25 L/m2h at 8 bar, which was enhanced thermally with an increased decomposition temperature of 50°C on thermogravimetric analysis (TGA). The pores generated in the cellulose acetate film were confirmed using a scanning electron microscope machine (SEM) and mercury porosimeter. Thermal stability and interactions in materials were measured using TGA and Fourier transform infrared (FT-IR).


2017 ◽  
Vol 30 (3) ◽  
pp. 292-302 ◽  
Author(s):  
Bin Zhang ◽  
Peng Wu ◽  
Huawei Zou ◽  
Pengbo Liu

Polyimide (PI) aerogels are open-celled materials with high porosity, low density, excellent mechanical property and high thermal stability. Linear PI aerogels exhibit drastic shrinkage during the fabrication process. Cross-linked PI aerogels were usually fabricated by utilizing the costly cross-linking agents such as 1,3,5-triaminophenoxybenzene or octa-(aminophenyl)silsesquioxane. Herein, amino functionalized multi-walled carbon nanotubes (MWCNTs-NH2) were prepared by amidation reaction; PI/MWCNTs-NH2 composite aerogels were fabricated by adding MWCNTs-NH2 to anhydride end-capped poly(amic acid) (PAA), chemical imidization of PAA and supercritical carbon dioxide drying. The microstructures, pore size, elastic modulus, thermal properties and other physical properties of the obtained PI/MWCNTs-NH2 composite aerogels were investigated. The results showed that MWCNTs-NH2 could act as a cross-linker of PI because the amino groups of MWCNTs-NH2 could react with the terminal anhydride groups of PAA. With the addition of MWCNTs-NH2, the shrinkage of PI/MWCNTs-NH2 composite aerogels decreased. The densities and Young’s moduli of PI/MWCNTs-NH2 composite aerogels also decreased. The PI/MWCNTs-NH2 composite aerogels had coralline-like structure with mesopores (average pore size: 11–20 nm). The PI/MWCNTs-NH2 composite aerogels also exhibited decent thermal stability and thermal insulating property.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


1997 ◽  
Vol 35 (8) ◽  
pp. 137-144 ◽  
Author(s):  
Tsuyoshi Nomura ◽  
Takao Fujii ◽  
Motoyuki Suzuki

Porous membrane of poly(tetrafluoroethylene) (PTFE) was formed on the surface of porous ceramic tubes by means of heat treatment of the PTFE particles deposit layer prepared by filtering PTFE microparticles emulsified in aqueous phase. By means of inert gas permeation, pore size was determined and compared with scanning electron micrograph observation. Also rejection measurement of aqueous dextran solutions of wide range of molecular weights showed consistent results regarding the pore size. Since the membrane prepared by this method is stable and has unique features derived from PTFE, it is expected that the membrane has interesting applications in the field of water treatment. Membrane separation of activated sludge by this composite membrane and original ceramics membrane showed that the PTFE membrane gives better detachability of the cake layer formed on the membrane. This might be due to the hydrophobic nature of the PTFE skin layer.


Sign in / Sign up

Export Citation Format

Share Document