scholarly journals Reaction Behaviors of Associated Minerals in Molten Salt Smelting of Stibnite and Kilogram-Class Trials

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Zhen Ouyang ◽  
Longgang Ye ◽  
Chaobo Tang ◽  
Yuntao Xin

The molten salt metallurgy of Sb, which involves the smelting of stibnite in a binary NaCl-Na2CO3 salt with sulfur-fixing and the addition of a reductant, has been proposed as a clean method for Sb extraction. However, the reacting behaviors of the minerals associated with stibnite (Sb2S3) during the smelting are still unclear, and industrial tests have not been conducted. This study investigated the behaviors of PbS, FeS2, SiO2, and CaCO3, which are the main minerals associated with stibnite, during reducing smelting by using the NaCl-Na2CO3 molten salt. The results showed that PbS could react with Na2CO3 to generate metallic Pb at 950 °C. FeS2 and SiO2 formed stable NaFeS2 and Na2SiO3 with the molten salt at a high temperature, respectively. CaCO3 formed an unstable intermediate product of Na2Ca(CO3)2 at 675 °C and decomposed with increasing temperature. Kilogram-class trials were also performed using 50 kg of concentrate and more than 300 kg of mixture material, and the results showed that the direct recovery rate of Sb and Au reached maximum values of 93.22% and 92.06% at temperature 920 °C in eutectic Na2CO3-NaCl molten salt, respectively, while the total sulfur-fixing ratio reached 99.49%. Thus, the associated minerals consumed the molten salt, and the feasibility of molten salt smelting was verified by this kilogram-class pilot experiment.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Shen ◽  
Qiang Zeng

AbstractIn the present paper, with using diverse methods (including the SEM, the XRD, the TPO, the FTIR, and the TGA) , the authors analysed samples of the major coal seam in Dahuangshan Mining area with different particle sizes and with different heated temperatures (from 50 to 800 °C at regular intervals of 50 °C). The results from SEM and XRD showed that high temperature and high number of pores, fissures, and hierarchical structures in the coal samples could facilitate oxidation reactions and spontaneous combustion. A higher degree of graphitization and much greater number of aromatic microcrystalline structures facilitated spontaneous combustion. The results from TPO showed that the oxygen consumption rate of the coal samples increased exponentially with increasing temperature. The generation rates of different gases indicated that temperatures of 90 °C or 130 °C could accelerate coal oxidation. With increasing temperature, the coal oxidation rate increased, and the release of gaseous products was accelerated. The FTIR results showed that the amount of hydroxide radicals and oxygen-containing functional groups increased with the decline in particle size, indicating that a smaller particle size may facilitate the oxidation reaction and spontaneous combustion of coal. The absorbance and the functional group areas at different particle sizes were consistent with those of the heated coal samples, which decreased as the temperature rose. The results from TGA showed that the characteristic temperature T3 declined with decreasing particle size. After the sample with 0.15–0.18 mm particle size was heated, its carbon content decreased, and its mineral content increased, inhibiting coal oxidation. This result also shows that the activation energy of the heated samples tended to increase at the stage of high-temperature combustion with increasing heating temperature.


Holzforschung ◽  
2011 ◽  
Vol 65 (4) ◽  
Author(s):  
Jenny Sabrina Gütsch ◽  
Herbert Sixta

Abstract The implementation of biorefinery concepts into existing pulp and paper mills is a key step for a sustainable utilization of the natural resource wood. Water prehydrolysis of wood is an interesting process for the recovery of xylo-oligosaccharides and derivatives thereof, while at the same time cellulose is preserved to a large extent for subsequent dissolving pulp production. The recovery of value-added products out of autohydrolyzates is frequently hindered by extensive lignin precipitation, especially at high temperatures. In this study, a new high-temperature adsorption process (HiTAC process) was developed, where lignin is removed directly after the autohydrolysis, which enables further processing of the autohydrolyzates. The suitability of activated charcoals as a selective adsorbent for lignin under process-relevant conditions (150 and 170°C) has not been considered up to now, because former experiments showed decreasing efficiency of charcoal adsorption of lignin with increasing temperature in the range 20–80°C. In contrast to these results, we demonstrated that the adsorption of lignin at 170°C directly after autohydrolysis is even more efficient than after cooling the hydrolyzate to room temperature. The formation of lignin precipitation and incrustations can thus be efficiently prevented by the HiTAC process. The carbohydrates in the autohydrolysis liquor remain unaffected over a wide charcoal concentration range and can be further processed to yield valuable products.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2006 ◽  
Vol 29 (9) ◽  
pp. 1118-1121 ◽  
Author(s):  
K. Terasaka ◽  
Y. Suyama ◽  
K. Nakagawa ◽  
M. Kato ◽  
K. Essaki

Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


Sign in / Sign up

Export Citation Format

Share Document