scholarly journals A Review on Adhesively Bonded Aluminium Joints in the Automotive Industry

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 730
Author(s):  
Francesca Cavezza ◽  
Matthieu Boehm ◽  
Herman Terryn ◽  
Tom Hauffman

The introduction of adhesive bonding in the automotive industry is one of the key enabling technologies for the production of aluminium closures and all-aluminium car body structures. One of the main concerns limiting the use of adhesive joints is the durability of these system when exposed to service conditions. The present article primarily focuses on the different research works carried out for studying the effect of water, corrosive ions and external stresses on the performances of adhesively bonded joint structures. Water or moisture can affect the system by both modifying the adhesive properties or, more importantly, by causing failure at the substrate/adhesive interface. Ionic species can lead to the initiation and propagation of filiform corrosion and applied stresses can accelerate the detrimental effect of water or corrosion. Moreover, in this review the steps which the metal undergoes before being joined are described. It is shown how the metal preparation has an important role in the durability of the system, as it modifies the chemistry of the substrate’s top layer. In fact, from the adhesion theories discussed, it is seen how physical and chemical bonding, and in particular acid-base interactions, are fundamental in assuring a good substrate/adhesive adhesion.

2013 ◽  
Vol 765 ◽  
pp. 721-725 ◽  
Author(s):  
Allan Hutchinson ◽  
Patricia H. Winfield ◽  
Denise Morrey

A controllable adhesive disbonding mechanism can be achieved by activating functional additives located within the matrix of an adhesively bonded joint. This action facilitates the disassembly and material recovery from structurally bonded assemblies. The engineering capabilities of bonded joints containing a range of physical foaming agents were investigated. The effect of the physical foaming agents on joint disassembly was mostly attributable to the volumetric expansion efficiency of the additive whilst constrained within an adhesive matrix.


2017 ◽  
Vol 63 (No. 1) ◽  
pp. 36-44 ◽  
Author(s):  
Müller Miroslav

In the area of bonding of sheets of metals, mainly in construction of transport and agricultural machines, single-lap bonds are used. In manufacturing corporations focused on bonding of the metal sheets the technologies such as riveting, welding and adhesive bonding are particularly used. These methods are frequently combined. The aim of the research was the evaluation of lap length of alloy AlCu4Mg adhesively bonded using two component epoxy adhesive, which is commonly used in construction of machines and its modification based in addition of filler in form of aluminium microparticles. The secondary aim of the research was to ascertain the influence of microparticle volume of aluminium filler on mechanical properties of polymer particle composite. Strength of adhesively bonded joint depends on the thickness of the bonded material. Strength of the adhesively bonded joint is dependent on the lapping length of adhesively bonded material. The highest values of strength of adhesively bonded joint were reached with the coefficient of the proportional length 0.27 ± 0.01. The assumption about negative effect of filler on tensile strength during the experiments was not confirmed. 


Author(s):  
Mehdi Asgharifar ◽  
Fanrong Kong ◽  
Blair Carlson ◽  
Radovan Kovacevic

This study investigates the potentiality of using atmospheric-pressure Direct Current (DC) plasma arc discharge as a surface treatment method of aluminum alloys in adhesively bonded joints in order to enhance adhesion. The surface morphology exposed to the arc for the current of 40 A (low intensity) and the plasma torch scanning speeds between 20 and 120 mm/s, exhibits a micro-scale surface roughness appropriate for adhesive bonding. The arc textured surfaces are characterized by using an optical profilometer. Additionally, the effect of modified surface on the stress distribution throughout the single-lap adhesively bonded joint in tension is explored by 2D FEM. The geometrical model for FE analysis of adhesively bonded structure is generated by including the surface texture coordinates obtained from the optical profilometer.


Author(s):  
XiaoBo Zhu ◽  
YongBing Li ◽  
GuanLong Chen ◽  
Pei-Chung Wang

The bonding of dissimilar materials is of primary importance to the automotive industry as it enables designers the freedom to choose from a wide variety of low density materials such as aluminum and magnesium. However, when two dissimilar materials (e.g., aluminum-to-steel) are bonded by curing at elevated temperatures, residual stresses result upon cooling the layered material system to room temperature. Problems such as distortion and fracture of adhesive often emerge in bonding of these dissimilar materials for automotive applications. In this study, the transient distortion of riveted and rivet-bonded aluminum AA6061-T6-to-steels during the curing process was investigated using the photographic method. The influences of temperature, adhesive properties, adherend thickness, adherend strength, and the presence of constraints on the transient distortion and adhesive fracture were evaluated. The peak curing temperature was found to play the most important role in distortion and adhesive fracture, followed by the influence of adherends thickness. In contrast, the other parameters studied such as the adhesive strength, constraints' type, and adherend strength produced a limited effect on distortion. The results provide useful information about vehicle body structure's design in reducing the curing induced distortion.


2021 ◽  
Author(s):  
MONISH URAPAKAM RAMAKRISHNAN ◽  
PANKAJ K. MALLICK

Tubular members are used in the automotive industry for body, chassis, and powertrain components such as front rails, underbody frames or sub frames, driveshaft structures and space frames. They are also extensively used in buses and other heavy vehicle structures. With focus on light-weighting, there is increasing use of multimaterial structures with aluminum and high-performance composites. Joining a variety of materials with different characteristics and compositions is a major challenge for the design of such structures. Hence, adhesive bonding is emerging as one of the key joining technique for multi-material structures due to their compatibility with commonly used lightweight materials. Since tubular joints in automotive structures may experience crush type load, this study considers the crush characteristics of composite-aluminum tubular adhesive joints using finite element analysis.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
H. F. M. de Queiroz ◽  
M. D. Banea ◽  
D. K. K. Cavalcanti

AbstractNatural fibre-reinforced composites have attracted a great deal of attention by the automotive industry mainly due to their sustainable characteristics and low cost. The use of sustainable composites is expected to continuously increase in this area as the cost and weight of vehicles could be partially reduced by replacing glass fibre composites and aluminium with natural fibre composites. Adhesive bonding is the preferred joining method for composites and is increasingly used in the automotive industry. However, the literature on natural fibre reinforced polymer composite adhesive joints is scarce and needs further investigation. The main objective of this study was to investigate experimentally adhesively bonded joints made of natural, synthetic and interlaminar hybrid fibre-reinforced polymer composites. The effect of the number of the interlaminar synthetic layers required in order to match the bonded joint efficiency of a fully synthetic GFRP bonded joint was studied. It was found that the failure load of the hybrid jute/glass adherend joints increased by increasing the number of external synthetic layers (i.e. the failure load of hybrid 3-layer joint increased by 28.6% compared to hybrid 2-layer joint) and reached the pure synthetic adherends joints efficiency due to the optimum compromise between the adherend material property (i.e. stiffness and strength) and a diminished bondline peel stress state.


2018 ◽  
Vol 183 ◽  
pp. 04010 ◽  
Author(s):  
Matthias Reil ◽  
David Morin ◽  
Magnus Langseth ◽  
Octavian Knoll

The multi-material design of modern car bodies requires joining technologies for dissimilar materials. Adhesive bonding in combination with self-piercing riveting is widely used for joining steel and aluminium structures. To guarantee crashworthiness and reliability of a car body, accurate and effcient numerical models of its materials and connections are required. Suitable component test setups are necessary for development and validation of such models. In this work, a novel test setup for adhesively bonded and point-wise connected components is presented. Here, load combinations comparable to a vehicle crash are introduced into the connections. The developed setup facilitates successive failure of multiple connections and enables a broad validation of numerical connection models.


Author(s):  
Avinash Parashar ◽  
Pierre Mertiny

The aim of this paper is to examine solutions and challenges related to joining thermoset composite piping. Fiber reinforced polymers (FRP) have been used in piping systems for more than 40 years. Higher specific mechanical properties and corrosion resistance of FRP make them a potential candidate for replacing metallic piping structures. Despite the advantages associated with FRP, their application is still limited due to, in part, unsatisfactory methods for joining composite subcomponents and inadequate knowledge of failure mechanism under different loading conditions. Adhesively bonded joints are attractive for many applications since they offer integrated sealing, minimal part count and do not require pipe extremities with complex geometries such as threads or bell and spigot configurations. So far, the majority of work reported in the technical literature on adhesively bonded pipe joints is concerned with lap joints employing wrapping techniques to produce overlap sleeve connections. More recently, a joining technique was proposed that replaces the wrapping technique with filament-wound overlap sleeve couplers that are adhesively bonded to the pipe extremities. In the present article, various joining techniques for FRP piping through adhesive bonding are discussed, and damage mechanisms under different loading conditions are examined.


2018 ◽  
Vol 52 (26) ◽  
pp. 3621-3635 ◽  
Author(s):  
JJM Machado ◽  
EAS Marques ◽  
LFM da Silva

The use of adhesively bonded joints in structural components for the automotive industry has significantly increased over the last years, supported by the widespread integration of composite materials. This synergy allows vehicle manufacturers to offer a significant weight reduction of the vehicle allowing for fuel and emissions reduction and, at the same time, providing high mechanical strength. However, to ensure vehicle safety, the crashworthiness of these adhesive joints must be assessed, to evaluate if the structures can sustain large impact loads, transmitting the load and absorbing the energy, without damaging the joint. The novelty of this work is the study of the strain rate dependent behaviour of unidirectional composite adhesive joints bonded with a ductile epoxy crash resistant adhesive, subjected to low and high testing temperatures and using different overlap lengths. It was demonstrated that joints manufactured with this type of adhesive and composite substrates can exhibit excellent quasi-static and impact performance for the full range of temperatures tested. Increasing the overlap length, and independently of the testing temperature, it was observed an increase of energy absorbed for both quasi-static and impact loads, this is of considerable importance for the automotive industry, demonstrating that composite joints exhibit higher performance under impact.


Sign in / Sign up

Export Citation Format

Share Document