scholarly journals Prediction of Fatigue Limit of Spring Steel Considering Surface Defect Size and Stress Ratio

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 483
Author(s):  
Takehiro Ishii ◽  
Koji Takahashi

Surface defects decrease the fatigue limit of metals. In this study, the effects of surface defects on the fatigue limit of high-strength spring steel specimens were investigated. Several equations to predict the fatigue limit of specimens with surface defects were evaluated. Specimens with a semicircular slit with depths ranging from 30 to 400 µm were prepared. The Vickers hardness of the specimen was approximately 470 HV. Bending fatigue tests were performed at stress ratios ranging from −2 to 0.4. The fatigue test results showed that the fatigue limit decreased with an increase in the slit depth. Moreover, the maximum defect size that resulted in a decrease in the fatigue limit was dependent on the stress ratio. On comparing the predicted fatigue limits with the experimental results, it was confirmed that the predictions made based on the modified El-Haddad model were in good agreement with the experimentally obtained data. Thus, this model can be used to evaluate the fatigue limit of high-strength steels containing small surface defects with different stress ratios.

Author(s):  
Yu-Jia Li ◽  
Fu-Zhen Xuan ◽  
Zheng-Dong Wang ◽  
Shan-Tung Tu

Axial force-controlled fatigue tests are conducted at various stress ratios (R) on Ti-6Al-4V specimens prepared by two different manufacturing techniques (hard turning plus polishing with and without vacuum stress relieve anneal carried out after polishing). Residual stress is measured by using X-ray diffraction. Results indicate that the surface compressive residual stress lead to an increase of fatigue limit at a given life and stress ratio. This effect decreases with increasing stress ratio R. At R = 0.6, the effect of surface residual stress on fatigue limit fades away. In addition, the location of crack initiation shifts from surface to interior when the stress ratio changes from −1 to 0.6.


2021 ◽  
Vol 349 ◽  
pp. 04007
Author(s):  
Michail Malikoutsakis ◽  
Christos Gakias ◽  
Ioannis Makris ◽  
Peter Kinzel ◽  
Eckehard Müller ◽  
...  

Leaf springs constitute the most effective suspension way of commercial vehicle axles from the cost and maintainability point of view. Especially in case of front axles, they overtake both the guidance and suspension functions, which consequently designates them as safety components, whose pre-mature failure is explicitly prohibited. The present paper deals with the fatigue performance of downsized parabolic leaf specimens made of the high-strength spring steel 51CrV4 under serial manufacturing conditions. It focuses on the influence of the major manufacturing steps, i.e. the heat treatment and the subsequently applied stress shot peening. The effectiveness of the applied heat treatment on the microstructure transformation and the extent of surface decarburization is determined by means of optical microscopy and corresponding microstructural analyses. Comprehensive series of constant amplitude fatigue tests are executed before and after the applied stress shot peening to quantify its effectiveness on the fatigue performance. The tests cover two characteristic stress ratios of operational significance with the complete range of interest being experimentally investigated. Additionally, surface residual stresses measurements together with micro- and macro-hardness and roughness values before and after stress shot peening are executed to expose the influence of each individual technological effect on the overall fatigue performance.


2018 ◽  
Vol 165 ◽  
pp. 04011
Author(s):  
Keisuke Tanaka ◽  
Yuta Murase ◽  
Hirohisa Kimachi

The effect of micro-notches on the fatigue strength of nickel thin films was studied. Two types of thin films with 10 μm thickness were produced by electrodeposition using sulfamate solution without and with brightener: ultra-fine grained film (UFG) with the grain size of 384 nm and nano-crystalline grained film (NCG) with that of 17 nm. Micro-sized notches introduced by FIB had the width of 2 μm and various depths from 8 to 150μm. Fatigue tests were conducted under the stress ratio of 0.1. The fatigue strength decreased with increasing depth of notches. NCG had much higher strength than UFG compared at the same notch depth. Notches as small as 8μm did reduce the fatigue strength of both UFG and NCG. The fatigue limit was controlled by the initiation of cracks and no non-propagating crack was observed in specimens fatigued below the fatigue limit. A model of fictitious crack successfully predicted the reduction of the fatigue limit due to micro-notches. The characteristic crack length of NCG was much smaller than the UFG, while the fatigue strength of defect-free NCG was larger than that of UFG. SEM observation of fracture surfaces was conducted to reveal micromechanisms of fatigue crack initiation.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


1990 ◽  
Vol 34 ◽  
pp. 719-727 ◽  
Author(s):  
Sumio Tanaka ◽  
Yukio Hirose ◽  
Keisuke Tanaka

The residual stress left on the fracture surface is one of the important parameters in X-ray fractographic study. It has been used to analyze fracture mechanisms in fracture toughness and fatigue tests especially of high strength steels.In this paper, X-ray fractography was applied to brittle fracture of alumina (Al2O3) and zirconia (ZΓO2) ceramics.


2005 ◽  
Vol 2005 (0) ◽  
pp. 197-198
Author(s):  
Kazuaki SHIOZAWA ◽  
Seiichi NISHINO ◽  
Takayuki HASEGAWA ◽  
Yasuyuki YACHI

2004 ◽  
Author(s):  
Stefano Beretta ◽  
Herna´n Juan Desimone ◽  
Andrea Poli

Tubular automotive components, e.g. stabilizers and half shafts, are components subjected to fatigue. In order to assess fatigue behavior of such components, it is important to know both the real load conditions as well as the material strength against multi-axial fatigue. For the second point, a detrimental effect in the fatigue limit of high strength steels is given by the defects present in the component, coming from the material (such as microinclusions, microvoids, etc) or for the process (e.g. handling marks). An integral approach in order to assess fatigue limit of tubular components is proposed. The attention is focused onto planar inhomogeneities, which are the most common in tubular products, though the methodology can be extended to different defect-shapes. The method is applied together with a probabilistic model, in order to analyze the probability of failure. In particular, two different processes (in terms of inhomogeneities present in the final component) are compared, and the results allow to evaluate, for example, the admissible load for the desired (or design) level of failure probability for the component.


2012 ◽  
Vol 504-506 ◽  
pp. 901-906 ◽  
Author(s):  
Antti Määttä ◽  
Antti Järvenpää ◽  
Matias Jaskari ◽  
Kari Mäntyjärvi ◽  
Jussi A. Karjalainen

The use of ultra-high-strength steels (UHS) has become more and more popular within last decade. Higher strength levels provide lighter and more robust steel structures, but UHS-steels are also more sensitive to surface defects (e.g. scratches). Practically this means that the critical crack size decreases when the strength increases. The aim of the study was to study if the formula of critical crack size is valid on forming processes of UHS-steels. Surface cracks with different depths were created by scratching the surface of the sheet by machining center. Effect of the scratch depth was determined by bending the specimens to 90 degrees. Bents were then visually compared and classified by the minimum achieved bending radius. Test materials used were direct quenched (DQ) bainitic-martensitic UHS steels (YS/TS 960/1000 and 1100/1250). Results from the bending tests were compared to the calculated values given by the formula of critical crack size.


Sign in / Sign up

Export Citation Format

Share Document