scholarly journals Synthesis of θ-Al2O3 Whiskers with Twins

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 895
Author(s):  
Nan Liao ◽  
Xiaojia Su ◽  
Haiwen Zhang ◽  
Qingguo Feng ◽  
Salvatore Grasso ◽  
...  

In this work, θ-Al2O3 whiskers with twins were successfully fabricated by a hydrothermal method followed by annealing at 1000 °C in argon atmosphere using Al2(SO4)3·18H2O, CO(NH2)2 and PEG2000 as initial materials. It is confirmed that precursor of AlO(OH) whiskers is suitable to be used for preparing alumina whiskers when the molar ratio of Al3+: CO(NH2)2 is selected to be 1:6. The mean length of obtained whiskers is 1.5 μm and the average width is 0.1 μm. Interestingly, it is found that the as-prepared θ-Al2O3 whiskers consist of twins with (100) plane as the twin surface, which is ascribed to the phase transformation from tetragonal phase (δ-Al2O3) to monoclinic phase (θ-Al2O3) during the annealing. Additionally, the specific surface area of θ-Al2O3 whiskers is measured to be 38.2 m2/g.

1992 ◽  
Vol 7 (11) ◽  
pp. 3065-3071 ◽  
Author(s):  
Peir-Yung Chu ◽  
Isabelle Campion ◽  
Relva C. Buchanan

Phase transformation and preferred orientation in ZrO2 thin films, deposited on Si(111) and Si(100) substrates, and prepared by heat treatment from carboxylate solution precursors were investigated. The deposited films were amorphous below 450 °C, transforming gradually to the tetragonal and monoclinic phases on heating. The monoclinic phase developed from the tetragonal phase displacively, and exhibited a strong (111) preferred orientation at temperature as low as 550 °C. The degree of preferred orientation and the tetragonal-to-monoclinic phase transformation were controlled by heating rate, soak temperature, and time. Interfacial diffusion into the film from the Si substrate was negligible at 700 °C and became significant only at 900 °C, but for films thicker than 0.5 μm, overall preferred orientation exceeded 90%.


2021 ◽  
Vol 1036 ◽  
pp. 130-136
Author(s):  
Ting Qun Tan ◽  
Lei Geng ◽  
Yan Lin ◽  
Yan He

In order to prepare carbon nanotubes with high specific surface area, small diameter, low resistivity, high purity and high catalytic activity, the Fe-Mo/Al2O3 catalyst was prepared based on the microreactor. The influence of different Fe/Al molar ratios on the catalyst and the carbon nanotubes prepared was studied through BET, SEM, TEM and other detection methods. Studies have shown that the pore structure of the catalyst is dominated by slit pores at a lower Fe/Al molar ratio. The catalytic activity is the highest when the Fe/Al molar ratio is 1:1, reaching 74.1%. When the Fe/Al molar ratio is 1:2, the catalyst has a higher specific surface area, the maximum pore size is 8.63 nm, and the four-probe resistivity and ash content of the corresponding carbon nanotubes are the lowest. The higher the proportion of aluminum, the higher the specific surface area of the catalyst and the carbon nanotubes, and the finer the diameter of the carbon nanotubes, which gradually tends to relax. The results show that when the Fe/Al molar ratio is 1:2, although the catalytic activity of the catalyst is not the highest, the carbon nanotubes prepared have the best performance.


Clay Minerals ◽  
1996 ◽  
Vol 31 (2) ◽  
pp. 263-277 ◽  
Author(s):  
M. K. Titulaer ◽  
H. Talsma ◽  
J. B. H. Jansen ◽  
J. W. Geus

AbstractThermoporometry (TPM) was applied to hydrotalcite precipitates prepared with carbonate, bicarboxylic acids and chloride. It was used to measure the formation of an ice body between the hydrotalcite particles. Before TPM could be applied, the dried hydrotalcite precipitate had to be soaked for two weeks in water. The mean value of a factor F measured by TPM, which described the shape of the ice body in hydrotalcite, was 1.7. This value was between those of a purely cylindrical (F = 2) and a purely spherical ice body (F = 1), indicating the formation of ice lenses. From the radius of the ice body, Rn, ice volume, Vn and shape factor F, the corresponding specific surface area of the hydrotalcite particles could be assessed. The TPM indicated that the distance between the separate hydrotalcite crystals in water, which is equal to 2(Rn+0.9) nm, was a function of the type of anion incorporated at the interlayer, such as chloride and bicarboxylic acid. The pore volume and surface area of the hydrotalcite particles measured by TPM were compared with those determined by the traditional nitrogen sorption technique on dried hydrotalcite. It appeared that sorption of N2 yielded much lower values than TPM. This difference was interpreted as being due to slow penetration of N2 through the dried hydrotalcite samples to the interparticle voids.


2011 ◽  
Vol 356-360 ◽  
pp. 1253-1257
Author(s):  
Xiao Ming Gao ◽  
Yu Fei Wu ◽  
Jing Wang ◽  
Feng Fu ◽  
Li Ping Zhang ◽  
...  

An enhanced visible-light-driven catalyst BiVO4 doping with Cu was synthesized by hydrothermal method and characterized by XRD, UV-vis DRS, specific surface area. The characterization results indicated a better crystal structure of Cu-BiVO4. The photocatalytic properties were evaluated by degrading wastewater with phenol, taking pH of catalysts prepared, dosage of catalyst and air flow as the research factors. The results showed that Cu-BiVO4 has an effective photodegradation of phenol under the suitable conditions.


2010 ◽  
Vol 68 ◽  
pp. 176-181 ◽  
Author(s):  
Seyyed Hamid Jazayeri ◽  
Federica Bondioli ◽  
Shiva Salem ◽  
Ali Allahverdi ◽  
Mansoor Shirvani ◽  
...  

In this research, solution-based combustion synthesis is applied to prepare the spinel CoAl2O4 pigment from precursor solution of Al(NO3)3 .9H2O, Co(NO3)2 .6H2O and glycine. Effect of pH values (2.5, 7, 10.5), molar ratio of fuel to metal nitrates in the precursor solutions (1.5, 2) and subsequent calcination temperature (800, 1000, 1200 °C) on the powder characteristics are described. Gel formation, morphologies, specific surface area and colour of the powder are characterized using DTA/TG, XRD, TEM, BET and UV-Vis. The results indicate that the crystalline spinel CoAl2O4 is formed at all different Gl/(metal nitrates) molar ratios, pH and temperatures and higher temperature promote the increase of the crystallite size. According to TEM figures most of the particles calcined at 800 and 1000 °C has sizes less than 50 and 100 nm, respectively. Corresponding to results of BET experiment, specific surface area has its maximum values at pH 7 and decreases with increasing of temperature. Finally, colorability test indicates the complete stability of the synthesized powder in the glass matrix.


1991 ◽  
Vol 249 ◽  
Author(s):  
Shigeyuki Sōmiya ◽  
Kazumitsu Hishinuka ◽  
Zenjiro Nakai ◽  
Notoshi Abe ◽  
Tokuji Akiba

ABSTRACTWell-crystallized Y2O3 -ZrO2 powder of 12nm crystallite size was synthesized by RoAogenious precipitation under hydrothermal condition at 180°C for 1 hour. This powder consisted of tetragonal zirconia. After calcination and ball milling, the crystiilite size was 22 nm and the tetragonal phase was reduced to 55% by ball milling. The average grain size was 0.5 µm and specific: surface area was 20 m /g. Highly dense TZP(> 99%) with a homogeneous microstructure was obtained by sintering this powder at 1400°C for 2 hours.


2012 ◽  
Vol 519 ◽  
pp. 83-86 ◽  
Author(s):  
Guang Wu Liu ◽  
Xing Yuan Ni ◽  
Bin Zhou ◽  
Qiu Jie Yu

This paper deals with the synthesis of ultralow density silica aerogels using tetramethyl orthosilicate (TMOS) as the precursor via sol-gel process followed by supercritical drying using acetonitrile solvent extraction. Ultralow density silica aerogels with 6 mg/cc of density was made for the molar ratio by this method. The microstructure and morphology of the ultralow density silica aerogels was characterized by the specific surface area, SBET, SEM, and the pore size distribution techniques. The results show that the ultralow density silica aerogel has the high specific surface area of 812m2/g. Thermal conductivities at desired temperatures were analyzed by the transient plane heat source method. Thermal conductivity coefficients of silica aerogel monoliths changed from 0.024 to 0.043W/ (m K) as temperature increased to 400°C, revealed an excellent heat insulation effect during thermal process.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Patrícia Da Cruz Favaro ◽  
Gabriel Ribas Pereira ◽  
Flávio Antônio Barca Jr. ◽  
Marcelo Marcondes Seneda ◽  
Augusto César Alves Assunção ◽  
...  

Background: The mechanisms of testicular thermoregulation may influence the blood flow provided by the testicular artery, where the proper blood supply to the testicle is crucial for promotingspermatogenesis and reproductive function in bulls. The size and shape of the testicles are determined by genetic mechanisms and environmental effects. A better understanding of the relationships between the anatomical characteristics of the testicles and scrotum can support a better reproductive assessment. The purpose of the current study was to evaluate the testicular temperature of different scrotal shapes using infrared thermography in bulls.Materials, Methods & Results: We evaluated 132 Braford bulls with an average age of 24 months. The evaluation of breeding bull semen was performed prior to the beginning of the experiment. Then, animals were selected on the basis of the size of their testes, which was determined by dividing the average width by the average length. The scrotal circumference was measured with a millimeter tape positioned around the largest circumference. Testicular and ocular temperature measurements and analysis were conducted using an infrared thermal camera, Flir T440 with emissivity of 0.98 and thermal sensitivity of 0.05°C. Testicular scrotum temperature and testicular shape were analyzed with one-way ANOVA using Minitab 16, and values of P < 0.05 were considered statistically significant. We observed that 67.42% of testicle shapes were long-oval, and 32.58% were long-moderate. The testicular temperature was higher in bulls with the long-moderate shape compared to those with the long-oval shape (P < 0.05). The mean length was higher in long-moderate shaped testicles compared to those of the long-oval shape (P < 0.01). There was no significant differences in rectal and ocular temperatures or in scrotal circumference between bulls with long-moderate and long-oval shapes (P > 0.05). In addition, the mean width was lower in testicles of long-moderate shape compared to those of the long-oval scrotal format (P < 0.01).Discussion: The results obtained showed that Braford bulls with the long-moderate testicular shape have a higher testicular temperature to maintain proper thermoregulation. The present study demonstrated that IRT can be used to evaluate the testicular temperature in animals with different scrotal conformations. In this study, Braford bulls showed lower length and width values for animals having long-moderate (9.21 and 5.22, respectively) and long-oval formats (8.56 and 5.56, respectively). In contrast, previous reports examining Nellore bulls between the ages of 17-20 months found a predominance of the long oval shape followed by the long-moderate shape, which indicates a change in testicular shape as age progresses, resulting in a rounder testicular shape. Perhaps other factors, such as the external cremaster muscle and tunica dartos, cause the testicles to be retracted towards the body at lower temperatures while at high temperatures, relaxation occurs. The prevailing testicular shape in Braford animals with a mean age of 24 months was the long-moderate shape. Thus, testicles with a larger surface area will have lower temperatures because they can dissipate heat more easily than testicles with lower surface area. The results suggest that the long-moderate scrotum format may influence the testicular temperature in mature Braford bulls.


2012 ◽  
Vol 66 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Tanja Barudzija ◽  
Alexey Gusev ◽  
Dragana Jugovic ◽  
Milena Marinovic-Cincovic ◽  
Miroslav Dramicanin ◽  
...  

Nanosized perovskite YTiO3 with the mean crystallite size of 18 nm was synthesized for the first time by mechanochemical treatment. The mechanochemical solid state reaction between commercial Y2O3 powder and mechanochemically synthesized TiO powder in molar ratio 0.5:1 was completed for 3 h in a high-energy planetary ball mill in argon atmosphere. The heating in vacuum at 1150 ?C for 12 h transforms nanosized YTiO3 to a well-crystallized single-phase perovskite YTiO3. Both samples were characterized by X-ray diffraction (XRD) and thermogravimetric (TGA/DTA) analyses, as well as superconducting quantum interference device magnetometer (SQUID) measurements.


2018 ◽  
Vol 279 ◽  
pp. 197-201
Author(s):  
Fang Wang ◽  
Yang Chao ◽  
Ming Han Xu ◽  
Rui Hua Wang ◽  
Ai Xia Chen ◽  
...  

Given the shortage of energy reserves, new energy sources must be identified. In this regard, improving the efficiency of solar cell conversion and simplifying the solar cell technology have become the focus of research. In this study, tin oxide nanometer thin film was fabricated on FTO conductive glass as photocathode through hydrothermal method. The synthesis condition was regulated, and performance test was also conducted. Results show that the crystallization driving force, crystallization rate, and grain size of tin dioxide crystal increase with increasing alkali ratio, leading to disorganized accumulation of tin oxide. Under prolonged holding time, tin oxide crystal became complete, and the surface area of the crystal increased. The crystallization driving force and rate also increased with increasing salt concentration and accompanied by clutter of tin oxide. The optimized process condition included 1:4 molar ratio of salt to alkali, 0.05 mol/L salt concentration, 200 °C reaction temperature, and 8 days of reaction. The highest specific surface area of the tin oxide nanometer film was obtained under the optimized condition.


Sign in / Sign up

Export Citation Format

Share Document