scholarly journals The Corrosion Resistance of Al Film on AZ31 Magnesium Alloys by Magnetron Sputtering

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1522
Author(s):  
Zhengyuan Gao ◽  
Dong Yang ◽  
Chengjin Sun ◽  
Lianteng Du ◽  
Xiang Zhang ◽  
...  

Nano Al films were prepared on AZ31 magnesium alloy samples by DC magnetron sputtering. The effects of sputtering power on the microstructure and corrosion resistance of the Al film were investigated. The results show that the surface of aluminum film is dense and polycrystalline state, and it is oriented along the Al (111) crystal plane. The grain size of Al film first increases and then decreases with the increase of sputtering power. When the sputtering power exceeds 100 W, there is no insignificant effect on the orientation of the Al crystals and the corrosion current density of the samples with Al film are reduced by two orders of magnitude. The corrosion resistance of the magnesium alloy samples with the Al film magnetron sputtered varies with the sputtering power. Compared with low sputtering power, the Al film sputtered by high power has the most excellent corrosion resistance, but too high sputtering power will lead to micro cracks on the Al film, which will adversely affect the corrosion resistance.

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhengyuan Gao ◽  
Chengjin Sun ◽  
Lianteng Du ◽  
Dong Yang ◽  
Xiang Zhang ◽  
...  

In order to enhance the corrosion resistance of AZ31 magnesium alloy, graphene-modified oily epoxy resin coating (G/OEP) were prepared on the surface of magnesium alloy. SEM observations show that graphene has fewer surface defects, and can significantly improve the surface quality of the coating and reduce defects. FI-TR testing shows that coating are mainly composed of epoxy resin (polyurethane) and its corresponding curing agent. Electrochemical testing shows that the coating can provide good corrosion protection for magnesium alloy. Compared with the corrosion current density of magnesium alloy of 6.20 × 10−7 A/cm2, the G/OEP can significantly reduce the corrosion current density to 6.96 × 10−12 A/cm2. Analysis of the morphology of the coating after electrochemical corrosion found that graphene can improve the shielding ability of the coating to corrosive media, and reduce the damage of corrosion to the coating structure, and enhance the corrosion resistance of the coating. The content of graphene for excellent corrosion resistance of coating during this experiment is 0.6 wt%. The graphene can fill the defects generally in the coating during the curing process to prevent substrate from penetration of corrosive media caused by the density and hydrophobicity of coating are increased.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7410
Author(s):  
Jiahui Yong ◽  
Hongzhan Li ◽  
Zhengxian Li ◽  
Yongnan Chen ◽  
Yifei Wang ◽  
...  

The effects of (NH4)2ZrF6 concentration, voltage and treating time on the corrosion resistance of ZK61M magnesium alloy micro-arc oxidation coatings were studied by orthogonal experiments. The SEM result shows that the surface roughness and porosity of MAO coatings increased with (NH4)2ZrF6 concentration, voltage and treating time as a whole, except the porosity decreased with treating time. EDS, XRD and XPS analysis show that (NH4)2ZrF6 was successfully incorporated into coatings by reactive incorporation, coatings are dominantly composed of ZrO2, MgO, MgF2 and amorphous phase Mg phosphate. Potentiodynamic polarization was used to evaluate the corrosion property of coatings. When the concentration of (NH4)2ZrF6 is 6 g/L, the voltage is 450 V, and the treating time is 15 min, the coating exhibits the best corrosion resistance which corrosion current density is four magnitudes lower than substrate attributed to the incorporation of ZrO2 and the deposition of MgF2 in the micropores.


2014 ◽  
Vol 633-634 ◽  
pp. 879-882 ◽  
Author(s):  
Jing Dong Qiu ◽  
Su Qiu Jia

Based on the traditional direct electroless nickel methods, chemical baths are improved by removing HF. Examinations have been carried out on the Ni-P deposited on the interlayer for morphology, composition and corrosion-resistance by SEM, EDS, XRD and other instruments. A Ni-P film with fine and dense structure was obtained on the AM60B magnesium alloy. It exhibits lower corrosion current density and more positive corrosion potential than the substrate.


2013 ◽  
Vol 575-576 ◽  
pp. 418-422 ◽  
Author(s):  
Jie Ma ◽  
Yuan Sheng Yang ◽  
Xiu Chun Wang ◽  
Jing Zhang ◽  
Shuo Liu ◽  
...  

Microarc oxidation coating and microarc oxidation-fluorocarbon coating were prepared on the surface of AZ80 magnesium alloy profiles. The phase structure, surface morphology and corrosion resistance of the coatings were investigated using SEM, XRD, copper sulfate spot test and polarization curve test. The main phase compositions of the microarc oxidation coatings were MgO, Mg2SiO4, MgSiO3, MgF2 and MgAl2O4. With increasing pulse voltage, the oxidation coating became thicker and the microstructure of the coating surface became compact; therefore the coating corrosion resistance was improved. The oxidation coating with pulse voltage of microarc oxidation controlled between 300-438V obtained the best corrosion resistance. The corrosion current density of magnesium alloy reduced 1-3 orders of magnitude after microarc oxidation treatment with increasing pulse voltage, and the corrosion resistance of microarc oxidation-fluorocarbon coating is desirable.


Author(s):  
Yunpeng Hu ◽  
Xuan Guo ◽  
Yang Qiao ◽  
Xiangyu Wang ◽  
Qichao Lin

AbstractIn recent years, along with the development and application of magnesium alloys, magnesium alloys have been widely used in automotive, aerospace, medicine, sports, and other fields. In the field of medical materials, magnesium not only has the advantage of light weight, high strength, and a density similar to that of human bone, but also has good biocompatibility and promotes the growth of human bone. However, the mechanical properties and corrosion resistance of magnesium alloys need to be further improved to meet the requirements for human biodegradable implants. In this study, three alloys (mass fractions: Mg–10Zn, Mg–20Zn, and Mg–30Zn (wt.%)) were prepared using powder metallurgy by homogeneously mixing powders of the above materials in a certain amount with magnesium as the substrate through the addition of zinc elements, which also have good biocompatibility. The effect of zinc on the microstructure, mechanical properties, wear performance, and corrosion resistance of magnesium–zinc alloys was studied when the zinc content was different. The results show that compared with the traditional magnesium alloy using powder metallurgy, prepared magnesium alloy has good resistance to compression and bending, its maximum compressive stress can reach up to 318.96 MPa, the maximum bending strength reached 189.41 MPa, and can meet the mechanical properties of the alloy as a human bone-plate requirements. On the polarization curve, the maximum positive shift of corrosion potential of the specimens was 73 mv and the maximum decrease of corrosion-current density was 53.2%. From the comparison of the above properties, it was concluded that the three prepared alloys of which Mg–20% Zn had the best overall performance. Its maximum compressive stress, maximum bending strength, and corrosion-current density reached 318.96 MPa, 189.41 MPa and 2.08 × 10−5 A·cm−2 respectively, which are more suitable for use as human implant bone splints in human-body fluid environment.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 781
Author(s):  
Weiyan Jiang ◽  
Wenzhou Yu

A gradient Mg-8 wt % Si alloy, which was composed of the agglomerated Mg2Si crystals coating (GMS8-1) and the eutectic Mg–Si alloy matrix (GMS8-2), was designed for biodegradable orthopedic implant materials. The bio-corrosion behavior was evaluated by the electrochemical measurements and the immersion tests. The results show that a significant improvement of bio-corrosion resistance was achieved by using the gradient Mg–Si alloy, as compared with the traditional Mg-8 wt % Si alloy (MS8), which should be attributed to the compact and insoluble Mg2Si phase distributed on the surface of the material. Especially, GMS8-1 exhibits the highest polarization resistance of 1610 Ω, the lowest corrosion current density of 1.7 × 10−6 A.cm−2, and the slowest corrosion rate of 0.10 mm/year. In addition, GMS8-1 and GMS8-2 show better osteogenic activity than MS8, with no cytotoxicity to MC3T3-E1 cells. This work provides a new way to design a gradient biodegradable Mg alloys with some certain biological functions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


2017 ◽  
Vol 4 (5) ◽  
pp. 6466-6471 ◽  
Author(s):  
Kittikhun Seawsakul ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Viyapol Pattantsetakul ◽  
Saksorn Limwichean ◽  
...  

2011 ◽  
Vol 686 ◽  
pp. 292-299
Author(s):  
Yong Gang Li ◽  
Ying Hui Wei ◽  
Li Feng Hou ◽  
Yun Tian ◽  
Li Jing Yang

The corrosion resistance of a 1~2mm thick AZ91D magnesium alloy die-casting coated with epoxy varnish after phosphatizing was tested. Zinc phosphating solution was used. In the experiment, uniform paint was obtained by dipping method. Scratch test showed that the adhesion force between the coating and matrix is excellent. Within the test range the optimal phosphating temperature and time are 50°C and 1 min tested by dynamic potential scanning method. With the organic coating the corrosion current density decreased 3 orders of magnitude, the polarization resistance increased 3 orders of magnitude. The coated specimens were immersed in10% H2SO4, 10% NaOH and acetone for 10 days, respectively. The results showed that blistering did not occur on the paint films. This work illustrated that the simple zinc phosphating process combined with simple organic coating can meet the corrosion resistance requirements of thin-wall die casting magnesium components that require higher quality appearance.


Sign in / Sign up

Export Citation Format

Share Document