scholarly journals New Advances in Tissue Metabolomics: A Review

Metabolites ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 672
Author(s):  
Michelle Saoi ◽  
Philip Britz-McKibbin

Metabolomics offers a hypothesis-generating approach for biomarker discovery in clinical medicine while also providing better understanding of the underlying mechanisms of chronic diseases. Clinical metabolomic studies largely rely on human biofluids (e.g., plasma, urine) as a more convenient specimen type for investigation. However, biofluids are non-organ specific reflecting complex biochemical processes throughout the body, which may complicate biochemical interpretations. For these reasons, tissue metabolomic studies enable deeper insights into aberrant metabolism occurring at the direct site of disease pathogenesis. This review highlights new advances in metabolomics for ex vivo analysis, as well as in situ imaging of tissue specimens, including diverse tissue types from animal models and human participants. Moreover, we discuss key pre-analytical and post-analytical challenges in tissue metabolomics for robust biomarker discovery with a focus on new methodological advances introduced over the past six years, including innovative clinical applications for improved screening, diagnostic testing, and therapeutic interventions for cancer.

2021 ◽  
Vol 22 (10) ◽  
pp. 5148
Author(s):  
Karin Enderle ◽  
Martin Dinkel ◽  
Eva-Maria Spath ◽  
Benjamin Schmid ◽  
Sebastian Zundler ◽  
...  

Intraepithelial lymphocytes (IEL) are widely distributed within the small intestinal epithelial cell (IEC) layer and represent one of the largest T cell pools of the body. While implicated in the pathogenesis of intestinal inflammation, detailed insight especially into the cellular cross-talk between IELs and IECs is largely missing in part due to lacking methodologies to monitor this interaction. To overcome this shortcoming, we employed and validated a murine IEL-IEC (organoids) ex vivo co-culture model system. Using livecell imaging we established a protocol to visualize and quantify the spatio-temporal migratory behavior of IELs within organoids over time. Applying this methodology, we found that IELs lacking CD103 (i.e., integrin alpha E, ITGAE) surface expression usually functioning as a retention receptor for IELs through binding to E-cadherin (CD324) expressing IECs displayed aberrant mobility and migration patterns. Specifically, CD103 deficiency affected the ability of IELs to migrate and reduced their speed during crawling within organoids. In summary, we report a new technology to monitor and quantitatively assess especially migratory characteristics of IELs communicating with IEC ex vivo. This approach is hence readily applicable to study the effects of targeted therapeutic interventions on IEL-IEC cross-talk.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 864 ◽  
Author(s):  
Sanjana Haque ◽  
Sunitha Kodidela ◽  
Kelli Gerth ◽  
Elham Hatami ◽  
Neha Verma ◽  
...  

In the last two decades, the mortality rate in people living with HIV/AIDS (PLWHA) has decreased significantly, resulting in an almost normal longevity in this population. However, a large portion of this population still endures a poor quality of life, mostly due to an increased inclination for substance abuse, including tobacco smoking. The prevalence of smoking in PLWHA is consistently higher than in HIV negative persons. A predisposition to cigarette smoking in the setting of HIV potentially leads to exacerbated HIV replication and a higher risk for developing neurocognitive and other CNS disorders. Oxidative stress and inflammation have been identified as mechanistic pathways in smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. Extracellular vesicles (EVs), packaged with oxidative stress and inflammatory agents, show promise in understanding the underlying mechanisms of smoking-induced HIV pathogenesis via cell-cell interactions. This review focuses on recent advances in the field of EVs with an emphasis on smoking-mediated HIV pathogenesis and HIV-associated neuropathogenesis. This review also provides an overview of the potential applications of EVs in developing novel therapeutic carriers for the treatment of HIV-infected individuals who smoke, and in the discovery of novel biomarkers that are associated with HIV-smoking interactions in the CNS.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Miederer ◽  
Stefanie Pektor ◽  
Isabelle Miederer ◽  
Nicole Bausbacher ◽  
Isabell Sofia Keil ◽  
...  

Abstract Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.


Author(s):  
Daniel G Tenen ◽  
Li Chai ◽  
Justin L Tan

Abstract Liver cancer is a serious disease. It is ranked as the cancer with the second highest number of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC), which arises from transformed hepatocytes, is the major subtype of liver cancer. It accounts for 85% of total liver-cancer cases. An important aspect of HCC that has been actively studied is its metabolism. With the liver as the primary site of numerous metabolic processes in the body, it has been shown that the metabolism of HCC cells is highly dysregulated compared to that of normal hepatocytes. It is therefore crucial to understand the metabolic alterations caused by HCC and the underlying mechanisms for these alterations. This deeper understanding will allow diagnostic and therapeutic advancements in the treatment of HCC. In this review, we will summarize the current literature in HCC metabolic alterations, induced vulnerabilities, and potential therapeutic interventions.


2017 ◽  
Author(s):  
Norio Takada ◽  
Madoka Omae ◽  
Fumihiko Sagawa ◽  
Neil C. Chi ◽  
Satsuki Endo ◽  
...  

ABSTRACTThe cardiovascular system facilitates body-wide distribution of oxygen, a vital process for development and survival of virtually all vertebrates. However, zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without the functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize yet other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations are performed on zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. Hence, a comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide a clue as to why it is the first organ to develop. Furthermore, the dataset herein could serve as a resource for the study of organ development and function.SUMMARY STATEMENTThe body-wide landscape of the cardiovascular functions during development is reported. Such landscape may provide a clue as to why the cardiovascular system is the first organ to develop.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1686 ◽  
Author(s):  
Caretta ◽  
Denaro ◽  
D’Avella ◽  
Mucignat-Caretta

Deregulation of intracellular signal transduction pathways is a hallmark of cancer cells, clearly differentiating them from healthy cells. Differential intracellular distribution of the cAMP-dependent protein kinases (PKA) was previously detected in cell cultures and in vivo in glioblastoma and medulloblastoma. Our goal is to extend this observation to meningioma, to explore possible differences among tumors of different origins and prospective outcomes. The distribution of regulatory and catalytic subunits of PKA has been examined in tissue specimens obtained during surgery from meningioma patients. PKA RI subunit appeared more evenly distributed throughout the cytoplasm, but it was clearly detectable only in some tumors. RII was present in discrete spots, presumably at high local concentration; these aggregates could also be visualized under equilibrium binding conditions with fluorescent 8-substituted cAMP analogues, at variance with normal brain tissue and other brain tumors. The PKA catalytic subunit showed exactly overlapping pattern to RII and in fixed sections could be visualized by fluorescent cAMP analogues. Gene expression analysis showed that the PKA catalytic subunit revealed a significant correlation pattern with genes involved in meningioma. Hence, meningioma patients show a distinctive distribution pattern of PKA regulatory and catalytic subunits, different from glioblastoma, medulloblastoma, and healthy brain tissue. These observations raise the possibility of exploiting the PKA intracellular pathway as a diagnostic tool and possible therapeutic interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanurup Das ◽  
Abhimanyu Harshey ◽  
Ankit Srivastava ◽  
Kriti Nigam ◽  
Vijay Kumar Yadav ◽  
...  

AbstractThe ex-vivo biochemical changes of different body fluids also referred as aging of fluids are potential marker for the estimation of Time since deposition. Infrared spectroscopy has great potential to reveal the biochemical changes in these fluids as previously reported by several researchers. The present study is focused to analyze the spectral changes in the ATR-FTIR spectra of three body fluids, commonly encountered in violent crimes i.e., semen, saliva, and urine as they dry out. The whole analytical timeline is divided into relatively slow phase I due to the major contribution of water and faster Phase II due to significant evaporation of water. Two spectral regions i.e., 3200–3400 cm−1 and 1600–1000 cm−1 are the major contributors to the spectra of these fluids. Several peaks in the spectral region between 1600 and 1000 cm−1 showed highly significant regression equation with a higher coefficient of determination values in Phase II in contrary to the slow passing Phase I. Principal component and Partial Least Square Regression analysis are the two chemometric tool used to estimate the time since deposition of the aforesaid fluids as they dry out. Additionally, this study potentially estimates the time since deposition of an offense from the aging of the body fluids at the early stages after its occurrence as well as works as the precursor for further studies on an extended timeframe.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 373
Author(s):  
Joshua J. Scammahorn ◽  
Isabel T. N. Nguyen ◽  
Eelke M. Bos ◽  
Harry Van Goor ◽  
Jaap A. Joles

Hydrogen sulfide (H2S) is an essential gaseous signaling molecule. Research on its role in physiological and pathophysiological processes has greatly expanded. Endogenous enzymatic production through the transsulfuration and cysteine catabolism pathways can occur in the kidneys and blood vessels. Furthermore, non-enzymatic pathways are present throughout the body. In the renal and cardiovascular system, H2S plays an important role in maintaining the redox status at safe levels by promoting scavenging of reactive oxygen species (ROS). H2S also modifies cysteine residues on key signaling molecules such as keap1/Nrf2, NFκB, and HIF-1α, thereby promoting anti-oxidant mechanisms. Depletion of H2S is implicated in many age-related and cardiorenal diseases, all having oxidative stress as a major contributor. Current research suggests potential for H2S-based therapies, however, therapeutic interventions have been limited to studies in animal models. Beyond H2S use as direct treatment, it could improve procedures such as transplantation, stem cell therapy, and the safety and efficacy of drugs including NSAIDs and ACE inhibitors. All in all, H2S is a prime subject for further research with potential for clinical use.


2021 ◽  
Vol 22 (2) ◽  
pp. 866
Author(s):  
Joie L. Behrens ◽  
Nadine Schnepel ◽  
Kathrin Hansen ◽  
Karin Hustedt ◽  
Marion Burmester ◽  
...  

The intestinal absorption of phosphate (Pi) takes place transcellularly through the active NaPi-cotransporters type IIb (NaPiIIb) and III (PiT1 and PiT2) and paracellularly by diffusion through tight junction (TJ) proteins. The localisation along the intestines and the regulation of Pi absorption differ between species and are not fully understood. It is known that 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) and phosphorus (P) depletion modulate intestinal Pi absorption in vertebrates in different ways. In addition to the apical uptake into the enterocytes, there are uncertainties regarding the basolateral excretion of Pi. Functional ex vivo experiments in Ussing chambers and molecular studies of small intestinal epithelia were carried out on P-deficient goats in order to elucidate the transepithelial Pi route in the intestine as well as the underlying mechanisms of its regulation and the proteins, which may be involved. The dietary P reduction had no effect on the duodenal and ileal Pi transport rate in growing goats. The ileal PiT1 and PiT2 mRNA expressions increased significantly, while the ileal PiT1 protein expression, the mid jejunal claudin-2 mRNA expression and the serum 1,25-(OH)2D3 levels were significantly reduced. These results advance the state of knowledge concerning the complex mechanisms of the Pi homeostasis in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document