scholarly journals Towards an Ultra-Sensitive Temperature Sensor for Uncooled Infrared Sensing in CMOS–MEMS Technology

Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 108 ◽  
Author(s):  
Hasan Göktaş

Microbolometers and photon detectors are two main technologies to address the needs in Infrared Sensing applications. While the microbolometers in both complementary metal-oxide semiconductor (CMOS) and Micro-Electro-Mechanical Systems (MEMS) technology offer many advantages over photon detectors, they still suffer from nonlinearity and relatively low temperature sensitivity. This paper not only offers a reliable solution to solve the nonlinearity problem but also demonstrate a noticeable potential to build ultra-sensitive CMOS–MEMS temperature sensor for infrared (IR) sensing applications. The possibility of a 31× improvement in the total absolute frequency shift with respect to ambient temperature change is verified via both COMSOL (multiphysics solver) and theory. Nonlinearity problem is resolved by an operating temperature sensor around the beam bending point. The effect of both pull-in force and dimensional change is analyzed in depth, and a drastic increase in performance is achieved when the applied pull-in force between adjacent beams is kept as small as possible. The optimum structure is derived with a length of 57 µm and a thickness of 1 µm while avoiding critical temperature and, consequently, device failure. Moreover, a good match between theory and COMSOL is demonstrated, and this can be used as a guidance to build state-of-the-art designs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Thomas Cole ◽  
Ye Fan ◽  
...  

AbstractThe gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.


2021 ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Cole ◽  
Ye Fan ◽  
...  

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 • C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 • C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Sensors.


2019 ◽  
Vol 9 (23) ◽  
pp. 5118 ◽  
Author(s):  
Chih-Hsiung Shen ◽  
Yun-Ying Yeh ◽  
Chi-Feng Chen

Besides the application of the photonic crystal for the photodetector in the visible range, the infrared devices proposed with subwavelength structure are numerically and experimentally investigated thoroughly for infrared radiation sensing in this research. Several complementary metal oxide semiconductor (CMOS) compatible thermopiles with subwavelength structure (SWS) are proposed and simulated by the FDTD method. The proposed thermopiles are fabricated by the 0.35 μm 2P4M CMOS-MEMS process in TSMC (Taiwan Semiconductor Manufacturing Company). The measurement and simulation results show that the response of these devices with SWS is higher than for those without SWS. The trend of the measurement results is consistent with that of the simulation results. Obviously, the absorption efficiency of the CMOS compatible thermopile can be enhanced when the subwavelength structure exists.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yi-Kuang Yen ◽  
Chao-Yu Lai

Detecting the concentration of Pb2+ ions is important for monitoring the quality of water due to it can become a health threat as being in certain level. In this study, we report a nanomechanical Pb2+ sensor by employing the complementary metal-oxide-semiconductor microelectromechanical system (CMOS MEMS)-based piezoresistive microcantilevers coated with PEDOT:PSS sensing layers. Upon reaction with Pb2+, the PEDOT:PSS layer was oxidized which induced the surface stress change resulted in a subsequent bending of the microcantilever with the signal response of relative resistance change. This sensing platform has the advantages of being mass-produced, miniaturized, and portable. The sensor exhibited its sensitivity to Pb2+ concentrations in a linear range of 0.01–1000 ppm, and the limit of detection was 5 ppb. Moreover, the sensor showed the specificity to Pb2+, required a small sample volume and was easy to operate. Therefore, the proposed analytical method described here may be a sensitive, cost-effective and portable sensing tool for on-site water quality measurement and pollution detection.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Wei-Chun Shen ◽  
Po-Jen Shih ◽  
Yao-Chuan Tsai ◽  
Cheng-Chih Hsu ◽  
Ching-Liang Dai

This study describes the fabrication of an ammonia gas sensor (AGS) using a complementary metal oxide semiconductor (CMOS)–microelectromechanical system (MEMS) technique. The structure of the AGS features interdigitated electrodes (IDEs) and a sensing material on a silicon substrate. The IDEs are the stacked aluminum layers that are made using the CMOS process. The sensing material; polypyrrole/reduced graphene oxide (PPy/RGO), is synthesized using the oxidation–reduction method; and the material is characterized using an electron spectroscope for chemical analysis (ESCA), a scanning electron microscope (SEM), and high-resolution X-ray diffraction (XRD). After the CMOS process; the AGS needs post-processing to etch an oxide layer and to deposit the sensing material. The resistance of the AGS changes when it is exposed to ammonia. A non-inverting amplifier circuit converts the resistance of the AGS into a voltage signal. The AGS operates at room temperature. Experiments show that the AGS response is 4.5% at a concentration of 1 ppm NH3; and it exhibits good repeatability. The lowest concentration that the AGS can detect is 0.1 ppm NH3


Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 792
Author(s):  
Chiu ◽  
Liu ◽  
Hong

This paper presents the design, fabrication, and characterization of an inductive complementary metal oxide semiconductor micro-electromechanical systems (CMOS-MEMS) accelerometer with on-chip digital output based on LC oscillators. While most MEMS accelerometers employ capacitive detection schemes, the proposed inductive detection scheme is less susceptible to the stress-induced structural curling and deformation that are commonly seen in CMOS-MEMS devices. Oscillator-based frequency readout does not need analog to digital conversion and thus can simplify the overall system design. In this paper, a high-Q CMOS inductor was connected in series with the low-Q MEMS sensing inductor to improve its quality factor. Measurement results showed the proposed device had an offset frequency of 85.5 MHz, sensitivity of 41.6 kHz/g, noise floor of 8.2 mg/Hz, bias instability of 0.94 kHz (11 ppm) at an average time of 2.16 s, and nonlinearity of 1.5% full-scale.


2013 ◽  
Vol 64 (3) ◽  
Author(s):  
Nor Hafizah Ngajikin ◽  
Low Yee Ling ◽  
Nur Izzati Ismail ◽  
Abu Sahmah Mohd Supaát ◽  
Mohd Haniff Ibrahim ◽  
...  

Integration of Complimentary Metal-Oxide-Semiconductor (CMOS) and Microelectromechanical System (MEMS) technology in Fabry Perot blood pressure sensor (FPPS) fabrication processes is presented. The sensor that comprises of a 125 µm diameter of circular diaphragm is modeled to be fabricated using integration of CMOS-MEMS technology. To improve the sensor reliability, a sleeve structure is designed at the back of Silicon wafer by using MEMS Deep Reactive ion Etching (DRIE) process for fiber insertion, which offers a large bonding area. Optical light source at 550 nm wavelength is chosen for this device. The sensor diaphragm mechanic deflection and its optical spectrum is theoretically analyzed and simulated. The analytical results show high linear response in the range of 0 to 40 kPa and a reasonable sensitivity of 1.83 nm/kPa (spectrum shift/pressure) has been obtained for this sensor. The proposed integration of CMOS-MEMS technology limit the material selection yet produces an economical method of FPPS fabrication and integrated system.  


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Shu-Jung Chen ◽  
Yung-Chuan Wu

This paper introduces a thermoelectric-type sensor with a built-in heater as an alternative approach to the measurement of vacuum pressure based on frequency modulation. The proposed sensor is fabricated using the TSMC (Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan) 0.35 μm complementary metal-oxide-semiconductor-microelectro-mechanical systems (CMOS–MEMS) process with thermocouples positioned central-symmetrically. The proposed frequency modulation technique involves locking the sensor output signal at a given frequency using a phase-lock-loop (PLL) amplifier to increase the signal-to-noise ratio (SNR) and thereby enhance the sensitivity of vacuum measurements. An improved first harmonic signal detection based on asymmetrical applied heating gives a precise measurement. Following calibration, the output voltage is in good agreement with the calibration values, resulting in an error of 0.25% under pressures between 0.1–10 Torr.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 50 ◽  
Author(s):  
Yu-Sian Liu ◽  
Kuei-Ann Wen

This paper presents the design, simulation and mechanical characterization of a newly proposed complementary metal-oxide semiconductor (CMOS)/micro-electromechanical system (MEMS) accelerometer. The monolithic CMOS/MEMS accelerometer was fabricated using the 0.18 μm application-specific integrated circuit (ASIC)-compatible CMOS/MEMS process. An approximate analytical model for the spring design is presented. The experiments showed that the resonant frequency of the proposed tri-axis accelerometer was around 5.35 kHz for out-plane vibration. The tri-axis accelerometer had an area of 1096 μm × 1256 μm.


Sign in / Sign up

Export Citation Format

Share Document