scholarly journals A Robust Fully-Integrated Digital-Output Inductive CMOS-MEMS Accelerometer with Improved Inductor Quality Factor

Micromachines ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 792
Author(s):  
Chiu ◽  
Liu ◽  
Hong

This paper presents the design, fabrication, and characterization of an inductive complementary metal oxide semiconductor micro-electromechanical systems (CMOS-MEMS) accelerometer with on-chip digital output based on LC oscillators. While most MEMS accelerometers employ capacitive detection schemes, the proposed inductive detection scheme is less susceptible to the stress-induced structural curling and deformation that are commonly seen in CMOS-MEMS devices. Oscillator-based frequency readout does not need analog to digital conversion and thus can simplify the overall system design. In this paper, a high-Q CMOS inductor was connected in series with the low-Q MEMS sensing inductor to improve its quality factor. Measurement results showed the proposed device had an offset frequency of 85.5 MHz, sensitivity of 41.6 kHz/g, noise floor of 8.2 mg/Hz, bias instability of 0.94 kHz (11 ppm) at an average time of 2.16 s, and nonlinearity of 1.5% full-scale.

Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 50 ◽  
Author(s):  
Yu-Sian Liu ◽  
Kuei-Ann Wen

This paper presents the design, simulation and mechanical characterization of a newly proposed complementary metal-oxide semiconductor (CMOS)/micro-electromechanical system (MEMS) accelerometer. The monolithic CMOS/MEMS accelerometer was fabricated using the 0.18 μm application-specific integrated circuit (ASIC)-compatible CMOS/MEMS process. An approximate analytical model for the spring design is presented. The experiments showed that the resonant frequency of the proposed tri-axis accelerometer was around 5.35 kHz for out-plane vibration. The tri-axis accelerometer had an area of 1096 μm × 1256 μm.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5899
Author(s):  
Josep Maria Sánchez-Chiva ◽  
Juan Valle ◽  
Daniel Fernández ◽  
Jordi Madrenas

Lorentz-force Microelectromechanical Systems (MEMS) magnetometers have been proposed as a replacement for magnetometers currently used in consumer electronics market. Being MEMS devices, they can be manufactured in the same die as accelerometers and gyroscopes, greatly reducing current solutions volume and costs. However, they still present low sensitivities and large offsets that hinder their performance. In this article, a 2-axis out-of-plane, lateral field sensing, CMOS-MEMS magnetometer designed using the Back-End-Of-Line (BEOL) metal and oxide layers of a standard CMOS (Complementary Metal–Oxide–Semiconductor) process is proposed. As a result, its integration in the same die area, side-by-side, not only with other MEMS devices, but with the readout electronics is possible. A shielding structure is proposed that cancels out the offset frequently reported in this kind of sensors. Full-wafer device characterization has been performed, which provides valuable information on device yield and performance. The proposed device has a minimum yield of 85.7% with a good uniformity of the resonance frequency fr¯=56.8 kHz, σfr=5.1 kHz and quality factor Q¯=7.3, σQ=1.6 at ambient pressure. Device sensitivity to magnetic field is 37.6fA·μT−1 at P=1130 Pa when driven with I=1mApp.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2454
Author(s):  
Yi-Kuang Yen ◽  
Chao-Yu Lai

Detecting the concentration of Pb2+ ions is important for monitoring the quality of water due to it can become a health threat as being in certain level. In this study, we report a nanomechanical Pb2+ sensor by employing the complementary metal-oxide-semiconductor microelectromechanical system (CMOS MEMS)-based piezoresistive microcantilevers coated with PEDOT:PSS sensing layers. Upon reaction with Pb2+, the PEDOT:PSS layer was oxidized which induced the surface stress change resulted in a subsequent bending of the microcantilever with the signal response of relative resistance change. This sensing platform has the advantages of being mass-produced, miniaturized, and portable. The sensor exhibited its sensitivity to Pb2+ concentrations in a linear range of 0.01–1000 ppm, and the limit of detection was 5 ppb. Moreover, the sensor showed the specificity to Pb2+, required a small sample volume and was easy to operate. Therefore, the proposed analytical method described here may be a sensitive, cost-effective and portable sensing tool for on-site water quality measurement and pollution detection.


Author(s):  
Sung-Ki Nam ◽  
Su-Heon Jeong ◽  
Sun-Kyu Lee

This paper presents design and fabrication procedures for nano-Watt resolution of heat flux sensor. To enhance the resolution, a contact resistance of thermopile is especially focused. CMOS (Complementary Metal-Oxide Semiconductor-compatible) process was used for deposition of gold and chromium which are composed of thermopile. The most important part of thermopile is the contact region of the junctions which generate electrical noises as well as thermoelectric power. The effect of contact conditions at junction point was investigated. The fabricated sensor has 100 thermocouples connected in series and its active junction is on the membrane which directly affects the sensitivity. Developed sensor system provides 0.0629V/nW of sensitivity and 1nW of high resolution.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Wei-Chun Shen ◽  
Po-Jen Shih ◽  
Yao-Chuan Tsai ◽  
Cheng-Chih Hsu ◽  
Ching-Liang Dai

This study describes the fabrication of an ammonia gas sensor (AGS) using a complementary metal oxide semiconductor (CMOS)–microelectromechanical system (MEMS) technique. The structure of the AGS features interdigitated electrodes (IDEs) and a sensing material on a silicon substrate. The IDEs are the stacked aluminum layers that are made using the CMOS process. The sensing material; polypyrrole/reduced graphene oxide (PPy/RGO), is synthesized using the oxidation–reduction method; and the material is characterized using an electron spectroscope for chemical analysis (ESCA), a scanning electron microscope (SEM), and high-resolution X-ray diffraction (XRD). After the CMOS process; the AGS needs post-processing to etch an oxide layer and to deposit the sensing material. The resistance of the AGS changes when it is exposed to ammonia. A non-inverting amplifier circuit converts the resistance of the AGS into a voltage signal. The AGS operates at room temperature. Experiments show that the AGS response is 4.5% at a concentration of 1 ppm NH3; and it exhibits good repeatability. The lowest concentration that the AGS can detect is 0.1 ppm NH3


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 15 ◽  
Author(s):  
Shu-Jung Chen ◽  
Yung-Chuan Wu

This paper introduces a thermoelectric-type sensor with a built-in heater as an alternative approach to the measurement of vacuum pressure based on frequency modulation. The proposed sensor is fabricated using the TSMC (Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan) 0.35 μm complementary metal-oxide-semiconductor-microelectro-mechanical systems (CMOS–MEMS) process with thermocouples positioned central-symmetrically. The proposed frequency modulation technique involves locking the sensor output signal at a given frequency using a phase-lock-loop (PLL) amplifier to increase the signal-to-noise ratio (SNR) and thereby enhance the sensitivity of vacuum measurements. An improved first harmonic signal detection based on asymmetrical applied heating gives a precise measurement. Following calibration, the output voltage is in good agreement with the calibration values, resulting in an error of 0.25% under pressures between 0.1–10 Torr.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (9) ◽  
pp. 658-664 ◽  
Author(s):  
P. Muralt ◽  
R. G. Polcawich ◽  
S. Trolier-McKinstry

AbstractPiezoelectric microelectromechanical systems (MEMS) offer the opportunity for high-sensitivity sensors and large displacement, low-voltage actuators. In particular, recent advances in the deposition of perovskite thin films point to a generation of MEMS devices capable of large displacements at complementary metal oxide semiconductor-compatible voltage levels. Moreover, if the devices are mounted in mechanically noisy environments, they also can be used for energy harvesting. Key to all of these applications is the ability to obtain high piezoelectric coefficients and retain these coefficients throughout the microfabrication process. This article will review the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT). Superior piezoelectric coefficients (e31, f of −18 C/m2) are achieved in {001}-oriented PbZr0.52Ti0.48O3 films with improved compositional homogeneity on Si substrates. The advent of such high piezoelectric responses in films opens up a wide variety of possible applications. A few examples of these, including low-voltage radio frequency MEMS switches and resonators, actuators for millimeter-scale robotics, droplet ejectors, energy scavengers for unattended sensors, and medical imaging transducers, will be discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Thomas Cole ◽  
Ye Fan ◽  
...  

AbstractThe gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 $$^{\circ }$$ ∘ C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 $$^{\circ }$$ ∘ C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Things.


2021 ◽  
Author(s):  
Daniel Popa ◽  
Richard Hopper ◽  
Syed Zeeshan Ali ◽  
Matthew Cole ◽  
Ye Fan ◽  
...  

Abstract The gas sensor market is growing fast, driven by many socioeconomic and industrial factors. Mid-infrared (MIR) gas sensors offer excellent performance for an increasing number of sensing applications in healthcare, smart homes, and the automotive sector. Having access to low-cost, miniaturized, energy efficient light sources is of critical importance for the monolithic integration of MIR sensors. Here, we present an on-chip broadband thermal MIR source fabricated by combining a complementary metal oxide semiconductor (CMOS) micro-hotplate with a dielectric-encapsulated carbon nanotube (CNT) blackbody layer. The micro-hotplate was used during fabrication as a micro-reactor to facilitate high temperature (>700 • C) growth of the CNT layer and also for post-growth thermal annealing. We demonstrate, for the first time, stable extended operation in air of devices with a dielectric-encapsulated CNT layer at heater temperatures above 600 • C. The demonstrated devices exhibit almost unitary emissivity across the entire MIR spectrum, offering an ideal solution for low-cost, highly-integrated MIR spectroscopy for the Internet of Sensors.


Micromachines ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 108 ◽  
Author(s):  
Hasan Göktaş

Microbolometers and photon detectors are two main technologies to address the needs in Infrared Sensing applications. While the microbolometers in both complementary metal-oxide semiconductor (CMOS) and Micro-Electro-Mechanical Systems (MEMS) technology offer many advantages over photon detectors, they still suffer from nonlinearity and relatively low temperature sensitivity. This paper not only offers a reliable solution to solve the nonlinearity problem but also demonstrate a noticeable potential to build ultra-sensitive CMOS–MEMS temperature sensor for infrared (IR) sensing applications. The possibility of a 31× improvement in the total absolute frequency shift with respect to ambient temperature change is verified via both COMSOL (multiphysics solver) and theory. Nonlinearity problem is resolved by an operating temperature sensor around the beam bending point. The effect of both pull-in force and dimensional change is analyzed in depth, and a drastic increase in performance is achieved when the applied pull-in force between adjacent beams is kept as small as possible. The optimum structure is derived with a length of 57 µm and a thickness of 1 µm while avoiding critical temperature and, consequently, device failure. Moreover, a good match between theory and COMSOL is demonstrated, and this can be used as a guidance to build state-of-the-art designs.


Sign in / Sign up

Export Citation Format

Share Document