scholarly journals Intensity Switchable and Wide-Angle Mid-Infrared Perfect Absorber with Lithography-Free Phase-Change Film of Ge2Sb2Te5

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 374
Author(s):  
Xiaomin Hua ◽  
Gaige Zheng

The range of fundamental phenomena and applications achievable by metamaterials (MMs) can be significantly extended by dynamic control over the optical response. A mid-infrared tunable absorber which consists of lithography-free planar multilayered dielectric stacks and germanium antimony tellurium alloy (Ge2Sb2Te5, GST) thin film was presented and studied. The absorption spectra under amorphous and crystalline phase conditions was evaluated by the transfer matrix method (TMM). It was shown that significant tuning of absorption can be achieved by switching the phase of thin layer of GST between amorphous and crystalline states. The near unity (>90%) absorption can be significant maintained by incidence angles up to 75 under crystalline state for both transverse electric (TE) and transverse magnetic (TM) polarizations. The proposed method enhances the functionality of MMs-based absorbers and has great potential for application to filters, emitters, and sensors.

2020 ◽  
Vol 91 (3) ◽  
pp. 30901
Author(s):  
Yibo Tang ◽  
Longhui He ◽  
Jianming Xu ◽  
Hailang He ◽  
Yuhan Li ◽  
...  

A dual-band microwave metamaterial absorber with single-peak regulation and wide-angle absorption has been proposed and illustrated. The designed metamaterial absorber is consisted of hollow-cross resonators, solid-cross resonators, dielectric substrate and metallic background plane. Strong absorption peak coefficients of 99.92% and 99.55% are achieved at 8.42 and 11.31 GHz, respectively, which is basically consistent with the experimental results. Surface current density and changing material properties are employed to illustrate the absorptive mechanism. More importantly, the proposed dual-band metamaterial absorber has the adjustable property of single absorption peak and could operate well at wide incidence angles for both transverse electric (TE) and transverse magnetic (TM) waves. Research results could provide and enrich instructive guidances for realizing a single-peak-regulation and wide-angle dual-band metamaterial absorber.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


2019 ◽  
Vol 33 (20) ◽  
pp. 1950219 ◽  
Author(s):  
Chittaranjan Nayak ◽  
Alireza Aghajamali ◽  
Ardhendu Saha ◽  
Narottam Das

By using the transfer matrix method, the theoretical investigation has been carried out in the near- and mid-infrared bandgaps for a periodic multilayered structure that was composed of superconductor (SC) and semiconductor-metamaterial. It was found that two bandgaps appeared within the computational regions which are effectively optimized by manipulating the thickness of the SC film, fill factor of the semiconductor-metamaterial and the incidence angle of the incident electromagnetic wave. However, the thickness of the SC film and fill factor of the semiconductor-metamaterial are responsible for the red-shift of bandgaps, while the blue-shift is accounted for by the angle of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. It is notable, for the TM wave, that the bandgaps disappeared at the incident angles of approximately 60[Formula: see text]. Such properties are quite useful in designing any new types of edge filters and other optical devices in the near- and mid-infrared frequencies.


2016 ◽  
Vol 12 (2) ◽  
pp. 4278-4290
Author(s):  
Faouzi Ghmari ◽  
Ilhem Mezni

The purpose of this paper is to study the radiative properties of two model structures. The first model (A-1) is a rectangular grating of silicon (Si). The second one (A-2) is obtained from A-1 by filling their trenches by SiO2. These patterned wafers are characterized by three geometrical parameters, the period d, the filling factorand the thickness h. To derive and compute the radiative properties we use a rigorous coupled wave analysis (RCWA) method. Our attention is focused on the absorptance of these structures when they are illuminated by a monochromatic plane wave. We investigate the effect of the filling factor on the absorptance versus the direction of the incident wave. At specific angles of incidence the effect of the period is also studied. Besides, the influence of the thickness h on the absorptance is included throughout this work. At the wavelength = 632,8nm, we especially show that we can identify several perfect absorber model structures characterized by specific parameters and by accurate angle of incidence. We show that this will be done in both transverse electric (TE) and transverse magnetic (TM) polarization cases.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Lidan Zhou ◽  
Mingcheng Panmai ◽  
Jin Xiang ◽  
Sheng Lan

Abstract We investigate numerically and experimentally the optical properties of the transverse electric (TE) waves supported by a dielectric-metal heterostructure. They are considered as the counterparts of the surface plasmon polaritons (i.e., the transverse magnetic (TM) waves) which have been extensively studied in the last several decades. We show that TE waves with resonant wavelengths in the visible light spectrum can be excited in a dielectric-metal heterostructure when the optical thickness of the dielectric layer exceeds a critical value. We reveal that the electric and magnetic field distributions for the TE waves are spatially separated, leading to higher quality factors or narrow linewidths as compared with the TM waves. We calculate the thickness, refractive index and incidence angle dispersion relations for the TE waves supported by a dielectric-metal heterostructure. In experiments, we observe optical resonances with linewidths as narrow as ∼10 nm in the reflection or scattering spectra of the TE waves excited in a Si3N4/Ag heterostructure. Finally, we demonstrate the applications of the lowest-order TE wave excited in a Si3N4/Ag heterostructure in optical display with good chromaticity and optical sensing with high sensitivity.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4481
Author(s):  
Meng Cheng ◽  
Qiaoming Liu ◽  
Tiantian Gan ◽  
Yuanying Fang ◽  
Pengfei Yue ◽  
...  

Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


Sign in / Sign up

Export Citation Format

Share Document